What Are Some Problems with the Current Definition of a Planet and What Would An Alternate Approach Be?


In August of 2006, the International Astronomical Union (IAU) attempted to do what science had not done before: vote on a definition of planethood. This was sparked by the then-recent findings of the Kuiper Belt and the questions it raised about Pluto. Astronomers decided to hash out the details on what makes good qualification for planethood. Out of the 2,412 scientists that were present for the IAU of that year, only 424 were participants in the actual vote. The definition they passed had three criteria: 1. the object has to have hydrostatic equilibrium (be round), 2. it must orbit a star, and 3. it must dominate its area of space by being the prevalent massive object in its zone. It was this last qualification that did Pluto in as a planet and resulted in its distinction as a dwarf planet.

Now, let me be clear about something: two of those guidelines are great and help classify a group of objects. By making a planet something that must be round and orbit a star helps remove moons, asteroids, and comets from the equation. It is the last qualification that earns a lot of flak, and rightly so. What does it mean exactly to clear out the orbital zone? The IAU was attempting to show that the object had to be distinguishable from its surroundings, otherwise it was really a class of objects that orbited the sun. In the past, this happened to Ceres, Vesta, and other asteroids when scientists found more and now the same has happened to Pluto and company. But the IAU needed to make this clear. Because Neptune technically hasn't cleared its zone. After all, Pluto's orbit crosses past Neptune's for decades at a time. Has Neptune therefore cleared its zone? And what about Trojan and Centaur objects caught in Lagrange points? The IAU classification needed a better execution.

Planets? | Source

Now, to be fair there were plenty of other ideas spread out at the time and since then that are not good at all. Some have suggested making any primary object orbiting a star a planet, but then the Asteroid Belt, Kuiper Belt, and Oort Cloud would have to be included. Others feel anything that has a moon is therefore a planet but Mercury and Venus lack those. What is needed instead is a system that shows trends and helps enlighten us, not get lost in ambiguity or a non-empirical feeling of right vs. wrong.

So let's get to work. What do we like about current ideas? Orbiting a star is great because it provides a frame of reference, but what about rogue planets, drifting in interstellar space without a host star? Instead of viewing a star as a mandatory component of planet hood, use it instead for naming purposes and in the cases of rogue planets maybe assign name based on stars it was closest to.

We like static equilibrium for sure, for it makes a planet a round object and differentiates it from asteroids, comets and KBO's. But what about objects like Ceres, which seem to push the boundary? What about Vesta, which seems to be layered? And what to do with moons, who not only have these features but in the case of Pluto cause the barycenter to fall out of the central object?

Planets? | Source

It may be time to ditch the concept of planethood and instead look at orbiting objects as a layered, nestled structure. We could label objects based on the level they are from a star and also the density of the object. Jupiter would be a orbital level 1 object that is 5th from the sun and has several orbital level 2 objects orbiting it. Unlike the Kepler Space Telescope convention of naming based on order of discovery, this alternate system of mine lets the name tell you much about the place of the object and also potential compositional details. If it seems like an area around a star is filled with objects (like an Asteroid Belt or a Kuiper Belt) then that too could be classified by orbital levels. Of course this is an over-simplified version of what would be done and problems would surely arise from it just like ours, but this has the advantage of the classification possibly showing new trends in data just by rearranging the information. Who knows. Like all sciences, it too will evolve.

© 2015 Leonard Kelley

More by this Author


No comments yet.

    Sign in or sign up and post using a HubPages Network account.

    0 of 8192 characters used
    Post Comment

    No HTML is allowed in comments, but URLs will be hyperlinked. Comments are not for promoting your articles or other sites.

    Click to Rate This Article