Finding The Equation of A Circle

Finding The Equation of A Circle

A circle is a set of all points in a plane equidistant from a fixed point which is the center of the circle. The distance from the center to a point on the circle is called the radius.

Standard equation for a circle with center at the origin : X^2 + Y^2 = r^2

Standard equation for a circle with center at (h, k) : (X – h)^2 + ( Y – k)^2 = r^2

General equation of the circle : X^2 + Y^2 + DX + EY + F = 0.


Sample Problems Involving Circle :


Problem Number One :

Find the equation of a circle which passes through points (10, 2) ; (3, 9 ); (-2. 10).

Solution : Consider the general equation of a circle as X^2 + Y^2 + DX + EY + F = 0.

Using the given three points we derive our equation :

From the point ( 10, 2 ) we get the equation 100 + 4 + 10D + 2E + F = 0 or

104 + 10D + 2E + F = 0 by substituting 10 to X’s and 2 to Y’s . This is our equation one.

From the point (3, 9) we get 9 + 81 + 3D + 9E + F = 0 or 90 +3D + 9E + F = 0.

From the point (-2.10) we get 4 + 100 – 2D + 10E + F = 0 or 104 -2D+ 10E +F = 0.

We now have a system of three equations :

104 + 10D + 2E + F = 0 eqn one

90 + 3D + 9E +F = 0 eqn two

104 = 2D + 10E + F = 0 eqn three

We now use elimination method to find the value of D, E and F.

Using equation one and eqn two to eliminate F, we do this by subtracting equation two from eqn one :

104 + 10D + 2E + F = 0

-(90 +2D + 9E + F = 0)

We get 14 + 7D - 7E = 0 let this be eqn four.

Using Equation 2 and eqn 3 to eliminate F we subtract eqn 3 from eqn 2 :

90 + 3D + 9E + F = 0

- ( 104D -2D +10E + F =0)

We get -14 + 5D - E = 0 let this be equation five

Using eqn four and eqn five we can solve for D and E.

14 + 7D - 7E = 0 eqn four

-14 +5D - E = 0 eqn five

Multiple equation five by -7 in order to eliminate E

(-14 + 5D - E = 0) * (-7) =è 98 =35D + 7E = 0

Adding eqn 4 and eqn 5

14 + 7D - 7E = 0

98 - 35D + 7E = 0

112 -28D = 0

(1/28) 112 = 28D (1/28)

D = 4

Substitute D = 4 in equation four ;

14 + 7(4) - 7E = 0

14 + 28 - 7E = 0

42 = 7E

E = 6

Substitute D = 4 , E = 6 in eqn 1 to solve for F

104 + 10(4) + 2(6) + F = 0

104 + 40 + 12 + F = 0

156 + F = 0

F = - 156

The general equation of the circle we are solving is :

X^2 + Y^2 +4X + 6Y-156 = 0.

We get this general equation by substituting D = 4, E = 6 and F = -156 to the general equation of the circle X^2 + Y^2 + DX + EY + F = 0.

To solve for the standard equation of the circle we will use completing the square:

X^2 + 4X + ____ + Y^2 + 6Y + ___ = 156

To complete the square divide the coefficient of the middle term by two then square it.

X^2 + 4X + 4 + Y^2 + 6Y + 9 = 156 + 4 + 9.

The standard equation of the circle we are looking for is :

(X + 2)^2 + (Y + 3)^2 = 169

The circle has its center at (-2, -3) and has a radius equal to 13.


Problem Number Two :

Find the equation of a circle whose diameter has its endpoints at A(-3, 5) and B(1, 3).

To find the center of the circle find the midpoint of the diameter using midpoint formula.

Here is the midpoint formula :

X = (X1 + X2 )/2 is used in finding the X-coordinate of the midpoint.

Y = (Y1 + Y2 )/2 is used in finding the Y-coordinate of the midpoint.

Using the endpoints (-3, 5) and (1, 3)

X = (-3 + 1)/2 = -1 Y = (5 +3 )/2 = 4

Therefore the midpoint of the diameter which is also the center of the circle we are looking for is ( -1, 4)

To find the radius of the circle find the distance between the center and one endpoint using distance formula. The distance formula is :

D = SQRT((Y2 – Y1)^2 + (X2 – X1)^2).

Using one endpoint (1, 3) and the center of the circle ( -1, 4), let us find the distance using the distance formula :

D = SQRT( ( 3-4)^2 + (1 + 1)^2 ) = > SQRT(5)

Therefore the standard equation of the circle we are looking for is :

(X + 1 )^2 + ( Y – 4 )^2 = 5

.

More by this Author


Comments 9 comments

steffer profile image

steffer 5 years ago from Belgium (Europe)

ah ok

shouldn't you work for NASA or something?


bettybarnesb profile image

bettybarnesb 5 years ago from Bartlett, TN

Ok Christina: I can add, subtract, multiply and divide then I am lost. Happy New Year.


cristina327 profile image

cristina327 5 years ago from Manila Author

Hi steffer and bettybarnesb thank you for taking time to read this hub. Blessings and regards.


monica_2492 5 years ago

there a entries(coefficients, signs)that sometimes confuses me.,but your hub helped me a lot in my analytic geometry assignment., thanks a lot!Godbless!


nadine 5 years ago

this helped me a lot my analytic geometry

TY GBY


tashana tabawan 5 years ago

thanx......it helps a lot for my assignment in advance algebra....and analytic geometry,can i ask more?jejejeje,if its ok.........


Vincent 4 years ago

this is very helpful thanks

can you write about solving circle using equation?


zhei 4 years ago

thanks :))


Godspower 4 years ago

Thank u very much for helping me to find asnwer to my exam

    Sign in or sign up and post using a HubPages Network account.

    0 of 8192 characters used
    Post Comment

    No HTML is allowed in comments, but URLs will be hyperlinked. Comments are not for promoting your articles or other sites.


    Click to Rate This Article
    working