Global Warming Science And The Wars: Guy Callendar

Guy Callendar, 1934.

Image courtesy Wikipedia.
Image courtesy Wikipedia.

Nearly everybody likes to be right, and scientists perhaps more so than the rest of us. Their professional lives, after all, are dedicated to uncovering the truth, which they do in part by quantifying and minimizing error. The interesting thing, though, is that in science there is more than one way to be right.

Consider the case of Guy Stewart Callendar. He should be famous. Scholar James Fleming writes flatly that “Callendar established the CO2 theory of climate change in its recognizably modern form.” It was Callendar who first used meteorological data to construct a global temperature time series; who first established the background concentration level of atmospheric CO2 and identified an anthropogenic increase; and who was instrumental in bringing thirty years of advances in spectroscopy to bear on climate studies. All of these types of studies are crucial to the modern understanding of CO2 and climate.

So why is Callender not better known today? Partly because he worked, not as an academic, but as a defense researcher. He not only lacked the “bully pulpit” of a professorial chair, but was expected to maintain discreet silence about his job-related research. Perhaps worse, he was—in terms of employment, though not of technical skill—an “amateur.” (In the auctorial heading of his 1938 paper on CO2-induced warming he is “G.S. Callendar, steam technologist.”) And partly it is because he did not anticipate the temperature declines experienced in the 1950s and 1960s. Thus, at the end of his life, he was wrong about the most central of his conclusions: that he had actually detected the human fingerprint on Earth’s climate.

H.L.Callendar
H.L.Callendar

One of the first surprises about Callendar is that this quintessentially English man was born, not in London or some leafy corner of Sussex, but in Montreal. His father, Hugh Longbourne Callendar, had since 1893 held a chair in Physics at McGill University. Among his many accomplishments there, he had in 1896 created the first Canadian x-ray images, and had helped to pioneer their use in clinical medical diagnosis. But after Guy Callendar’s birth on February 9, 1898, Professor Callendar accepted the Quain Chair of Physics, University College, London. He would be succeeded at McGill by no less than Ernest Rutherford, who wrote:

Callendar here was considered a universal genius and I gain a sort of reflected glory by carrying on with things Callendar alone was able to do. The trouble is that Callendar left such a reputation behind him that I have to keep rather in the background at present.

Redpath Museum, McGill University.  Image courtesy Gene Arboit & Wikimedia Commons.
Redpath Museum, McGill University. Image courtesy Gene Arboit & Wikimedia Commons.
James McGill Statue, McGill University.  Image courtesy Gene Arboit & Wikimedia Commons.
James McGill Statue, McGill University. Image courtesy Gene Arboit & Wikimedia Commons.
McGill University at play in 1884.
McGill University at play in 1884.

The elder Callendar’s career advanced again with a move to the Royal College of Science (later part of Imperial College) in 1902, and in 1905 the Callendar family—now including a fourth child, with Guy’s younger brother Max—was able to move into a fine home in the London suburb of Ealing. 49 Grange Road had 22 rooms, and—in addition to the greenhouse, tennis lawn, and putting green—boasted two garages equipped with “pit, crane, lathe and all tools” necessary to maintain the family car. The household was supported by a staff of four to six servants, plus a chauffeur and a gardener.

The amenities reflect the family’s pastimes: tennis was a lifelong avocation for Guy, and all three Callendar brothers contended for the local club singles championships at various times—though only Max would win it. (Guy’s best result came in 1928 when he was runner-up.) Motoring was a favorite recreation for the family, too, and Hugh Callendar himself spent time modifying their Stanley Steamer to make it a practical touring vehicle.

1906 Stanley Steamer Runabout.  Hugh Callendar purchased a 1906 Stanley.  Image courtesy conceptcarz.com.
1906 Stanley Steamer Runabout. Hugh Callendar purchased a 1906 Stanley. Image courtesy conceptcarz.com.
1908 Stanley Touring Car, similar to the model Hugh Callendar modified.  Image courtesy conceptcarz.com.
1908 Stanley Touring Car, similar to the model Hugh Callendar modified. Image courtesy conceptcarz.com.

We hear little about Guy at first—apart from an unfortunate accident in 1903, in which he was permanently blinded in his left eye by his pin-wielding elder brother, Leslie. But his education was evidently the first-class affair that one might expect. He began by attending the Durston House School, which was followed by St. Paul’s School, Hammersmith. Though St. Paul’s lacks an historic campus, having moved several times over its history, it has been in existence since 1509, and boasts among its distinguished alumni the poet John Milton, the astronomer Edmund Halley, and the diarist Samuel Pepys.

Pitz Manor in Walpole Park, a short walk from the Callendar family home in Ealing.  Image courtesy PG Champion and Wikimedia Commons.
Pitz Manor in Walpole Park, a short walk from the Callendar family home in Ealing. Image courtesy PG Champion and Wikimedia Commons.

But 1914 was to be the year in which this comfortable upper middle-class life was to be darkened considerably by two tragedies, one historic and one familial. Guy’s sister, Cecil—whose beautiful pen drawing of 49 Grange Road can be seen in James Fleming’s account of Callendar’s life and work—died of pneumonia at 19. And in September came the outbreak of the Great War, as it soon became known.

Archduke Ferdinand and his wife, Sophie, minutes before their assassination, June 28, 1914.  The event would trigger World War 1.  Image courtesy Wikimedia Commons.
Archduke Ferdinand and his wife, Sophie, minutes before their assassination, June 28, 1914. The event would trigger World War 1. Image courtesy Wikimedia Commons.
The site of the assassination, Sarajevo's "Latin Bridge."  Image courtesy Wikimedia Commons.
The site of the assassination, Sarajevo's "Latin Bridge." Image courtesy Wikimedia Commons.

Hugh Callendar was appalled by the events of the unfolding bloodbath.  Leslie Callender, then a student in one of his father’s classes, wrote in May 1915: 

. . .the morning after the Lusitania had been sunk by a submarine with the loss of many men, women, and children. . . my father opened his lecture by expressing his horror with the deepest emotion I have ever heard in his voice.  He then looked slowly round the students as if these young men too would soon be lost in the war, and with difficulty went on with his lecture.

Postcard of Lusitania leaving New York.
Postcard of Lusitania leaving New York.

Guy, too, was affected. Like many young men, he left school early to contribute to the war effort. Barred from active service by his partial blindness, he assisted in his father’s laboratory at Imperial College, using x-ray technology to improve military aero engines. In 1917, with manpower needs ever more critical as the slaughter continued on the battlefields of Europe, he joined the Royal Navy Volunteer Reserves, serving as a hydrophone (sonar) officer and reaching the rank of sublieutenant.

“Demobilised” in 1919, Guy returned to school at City & Guilds College—which had not yet been subsumed into his father’s institution, Imperial College—earning a certificate in Mechanics and Mathematics in 1922.

Queen's Tower, one of the few remaining landmarks from City and Guilds College as it was in Guy's day.  Image courtesy Wikimedia Commons.
Queen's Tower, one of the few remaining landmarks from City and Guilds College as it was in Guy's day. Image courtesy Wikimedia Commons.

This would mark the end of Guy’s formal education, but not the end of his learning.  Hired by his father as a research assistant working on the physics of steam, Guy would serve an eight-year apprenticeship marked by publication—Guy’s first article, on the total heat of steam, came out in 1926—and participation in the First International Steam Tables Conference in 1929.  (Steam tables listed steam properties under varying conditions, including very high temperatures, and were critical for a number of engineering applications.)

The Ealing LTC courts in 1934.  Here Guy had been runner up for the singles championship in 1928--impressive for a one-eyed man!
The Ealing LTC courts in 1934. Here Guy had been runner up for the singles championship in 1928--impressive for a one-eyed man!
Ealing LTC clubhouse in 1938.  Guy had moved away to Worthing in 1930, but this interior seems likely to have changed little during that time.
Ealing LTC clubhouse in 1938. Guy had moved away to Worthing in 1930, but this interior seems likely to have changed little during that time.

This period ended in 1930, a highly eventful year for Guy. Hugh Longbourne Callendar died at home on January 21, 1930, a victim to the same disease that had claimed Cecil sixteen years before. Guy was bequeathed ‘“the copy right of and all income royalties and other benefits which may accrue” from the Steam Tables and Diagrams, as well as all manuscripts, papers, and illustrations that are connected to them.’ The steam research funded by the British Electrical and Allied Industries Research Association (BEIRA) continued, and Guy’s salary was increased to 450 pounds yearly—commensurate, one supposes, with his increased responsibilities as lead researcher.

In June Guy attended his first important event as a principal: the Second International Steam Table Conference in Berlin. This must have been something of a milestone for the young researcher. But on August 30, 1930, he took a step personally much more portentious still, marrying Phyllis Burdon Pontreath in Upper St. Leonards-on-sea. Interestingly—in light of what would soon be Guy’s research focus—their wedding day marked the breaking of a record-setting heat wave.

Following the birth of twin daughters, Bridget and Ann on November 19, 1931, Guy’s family settled in a new home in Worthing. Their life together was happy; the parents were both active in the Ealing Tennis Club, and the family particularly enjoyed vacations to Shanklin on the Isle of Wight in 1937 and 1938.

Shanklin's Old Village today.  Image courtesy Steven Muster and Wikimedia Commons.
Shanklin's Old Village today. Image courtesy Steven Muster and Wikimedia Commons.

Of course, Guy’s professional life had its claims, too.  The 1934 Third International Steam Conference was the first to be held in the United States, with sessions in Washington, Boston and New York.  Guy sailed for New York aboard the Britannic—ironically, given the purpose of his visit, a motorship and not a steam liner.

RMS Britannic in 1929.
RMS Britannic in 1929.

Guy’s letters to Phyllis following the conclusion of the conference provide a rare glimpse into Callendar’s personal life:

Now that all the rush & work of the conference is over I feel frightfully homesick, and long to be back at our quiet little home where I really belong.  Once the boat starts moving I shall be all right.  I see the Britannic started back this morning, I wish I was on her.  Many people would think I must be mad to wish to quit living like a lord free of charge, in the center of New York, but I want to get home to you and the twins.  The air here is like thick warm soup, there is no movement, and it tastes & smells very secondhand.  I have a huge fan in my room, but the air in the streets (canyons) is awful.  I long for the glorious fresh breezes of Worthing.

Indeed, the very uniqueness of the letters is a testament to the sincerity of their content:  following his return home aboard Mauretania, Guy would never again spend such an extended time away from home and “his girls.”

Mauretania, as she had appeared in her WWI "dazzle" paint scheme.  From a painting by Burnell Poole.  Image courtesy Wikimedia Commons.
Mauretania, as she had appeared in her WWI "dazzle" paint scheme. From a painting by Burnell Poole. Image courtesy Wikimedia Commons.

Perhaps these images of air like “warm soup” reflect something of Guy’s growing interest in weather and climate. During these years he was collecting information. He read the papers of Fourier, Tyndall, Arrhenius, Ekholm and others, recording information and comments in voluminous notebooks. He saw that the work, though then not held in high regard, had merit—but was badly in need of updating. He was familiar with new developments in spectroscopy, for instance, which would put the ideas of Arrhenius and Ekholm on much surer footing. His first paper, “The Artificial Production of Carbon Dioxide and Its Influence on Temperature,” would be published in 1938. It would prove to be the most-cited of all of his papers.


The heading of Callendar (1938.)
The heading of Callendar (1938.)

He begins with a startlingly bold statement:

Few of those familiar with the natural heat exchanges of the atmosphere, which go into the making of our climates and weather, would be prepared to admit that the activities of man could have any influence upon phenomena of so vast a scale.

In the following paper I hope to show that such influence is not only possible, but is actually happening at the present time.

His demonstration is carried out in six sections. The first examines atmospheric concentrations of carbon dioxide, concluding that the nineteenth century “background level” was 274-292 ppm—still considered a valid estimate—and that the increase to the date of writing was about 6 per cent. (Interestingly, he projected for 2000 a concentration of 335 ppm—in very reasonable agreement with the 2000 369.4 ppm annual mean value measured at the Mauna Loa Observatory, if one considers the increase in the rate of CO2 emission over that of Callendar’s day.) The biggest unknown in 1938 was the rate at which the ocean would absorb increased amounts of CO2.

The "Keeling Curve"--atmospheric CO2 concentrations over time.
The "Keeling Curve"--atmospheric CO2 concentrations over time.

Callendar then examines the absorption of infrared radiation by water vapor and carbon dioxide, and—using the advances in spectrography since Arrhenius’ day—shows absorption by both to be significant.

The third section examines observational data on downwelling infrared radiation in the atmosphere. The term in use in Callendar’s day was “sky radiation,” defined as “The downward radiation from the sky, excluding the direct and scattered short wave radiation from the sun.” (Italics mine.) Callendar cites studies by Angstrom (1918), Dines (1927), Simpson (1928), and Brunt (1932.)

(It is noteworthy that today there are those arguing against the reality of this phenomenon from first principles of physics—without acknowledging that it has repeatedly been measured.)

Callendar summarizes the results in this way: “For normal conditions near the earth’s surface, with a clear sky the downward radiation varies between three and four fifths of that from the surface, the proportion being greatest when the air is warm and carries much water vapour.” He then calculates natural sky radiation for varying Terrestrial conditions, varying from the Antarctic plateau (high elevation, low temperature, humidity and pressure) to the tropics (high humidity).

The fourth section then uses the information from sections 2 and 3 to calculate how CO2 might contribute to sky radiation. Callendar wrote that “For temperate conditions at vapour pressure 7.5 mm Hg. I calculate that 95 per cent of the radiation comes from the water vapour; for arctic conditions the carbon dioxide may supply as much as 15 per cent of the total.”

Callendar describes how CO2 changes sky radiation:

When radiation takes place from a thick layer of gas, the average depth within that layer from which the radiation comes will depend upon the density of the gas. Thus if the density of the atmospheric carbon dioxide is altered it will alter the altitude from which the sky radiation of this gas originates. An increase of carbon dioxide will lower the mean radiation focus, and because the temperature is higher near the surface the radiation is increased, without allowing for any increased absorption by a greater total thickness of the gas.

This interpretation is essentially the converse of the point (made years earlier by Nils Ekholm) that radiation escaping the atmosphere is controlled by the effective altitude of the radiating layer. In both interpretations, the increased infrared optical thickness moves the effective radiative focus along a temperature gradient: warmer near the surface in Callendar’s formulation, colder near the top of the atmosphere in the case of Ekholm’s.

This map, drawn from data from the CERES satellite program, shows infrared emissions from the Earth during September 2003.  Map created by Robert Simmon, courtesy NASA.
This map, drawn from data from the CERES satellite program, shows infrared emissions from the Earth during September 2003. Map created by Robert Simmon, courtesy NASA.

Moving on to the effect on global temperature, Callendar began:

If the whole surface of the earth is considered as a unit upon which a certain amount of heat falls each day, it is obvious that the mean temperature will depend upon the rate at which this heat can escape by radiation, because no other type of heat exchange is possible.

(Evidently by “the whole surface of the earth,” he means to include the whole thickness of the atmosphere.) Callendar calculates that for temperate conditions, a doubling of CO2 should increase surface temperature by about 1.5 C. Looking back, this stands as a reasonable estimate.

The final section is again a milestone. Unquestionably the most novel feature of Callendar’s work is his effort to link observed temperature change to the influence of CO2—a field of study referred to today as the problem of “attribution.”

To investigate whether CO2-induced warming might be happening required a great deal of data—data that had not been collected with a view to investigating long-term temperature trends. Callendar showed the way. He collected weather records for over 200 locations, painstakingly checking and cross-checking them for consistency and accuracy. He used area weighting to compile regional trends. He compared various groupings of data against one another to detect inaccuracies.

Those acquainted with current controversies around the measurement of global temperature may be amused, surprised or even angered to learn that Callendar discussed, and compensated for, what is now known as the “urban heat island effect”:

It is well known that temperatures, especially the night minimum, are a little higher near the centre of a large town than they are in the surrounding country districts; if, therefore, a large number of buildings have accumulated in the vicinity of a station during the period under consideration, the departures at that station would be influenced thereby and a rising trend would be expected.

To examine this point I have divided the observations into three classes, as follows:—

(i) First class exposures, small ocean islands or exposed land regions without a material accumulation of buildings.

(ii) Small towns, which have not materially increased in size.

(iii) Large towns, most of which have increased considerably during the last half century.

Callendar briefly examines Arrhenius’s research question, can CO2 variation account for the ice ages? His conclusion is cautiously negative. On the one hand, “I find it almost impossible to account for movements of the gas of the required order. . .” but “if the effect of carbon dioxide on temperatures was considerably greater than supposed, glacial periods might well be accounted for in this way.” (The modern view has glaciation initiated by cyclical orbital changes and amplified by a strong CO2 feedback.)


Ice Age temperature variations (top) and CO2 concentrations (bottom.)  Images courtesy Robert Rohde and Global Warming Art.
Ice Age temperature variations (top) and CO2 concentrations (bottom.) Images courtesy Robert Rohde and Global Warming Art.

Though Callendar was a strong advocate for CO2-induced global warming, he was no “climate alarmist.”  His paper concludes:

. . . the combustion of fossil fuel, whether it be peat from the surface or oil from 10,000 feet below, is likely to prove beneficial to mankind in several ways, besides the provision of heat and power.  For instance the above mentioned small increases of mean temperature would be important at the northern margin of cultivation, and the growth of favourably situated plants is directly proportional to the carbon dioxide pressure (Brown and Escombe, 1905).  In any case the return of the deadly glaciers should be delayed indefinitely.

            As regards the reserves of fuel these would be sufficient to give at least ten times as much carbon dioxide as there is in the air at present.

1939, like 1914, would prove a portentious year.  The steam research culminated with the publication of  “The 1939 Callendar Steam Tables.”  (Further editions would follow in ’44, ’49 and ’57.)  It also marked renewed hostilities in Europe; once again, Britain was at war.  Following the Nazi’s September conquest of Poland, the war settled into a period of inactivity dubbed ‘the phony war.’  But soon enough blitzkrieg warfare rolled over a thoroughly out-manoeuvered France, and the British Expeditionary Force narrowly escaped annihilation on the beaches of Dunkirk.

Scene from the evacuation at Dunkirk.
Scene from the evacuation at Dunkirk.

On September 15, 1940, the Callendars experienced battle at just a slight remove. They were moving into their third home in Worthing—a house which would have enough space for them to take in Phyllis’s aged father. Above them, one of the major engagements of the Battle of Britain was taking place. Bridget Callendar—not yet 9—later recalled seeing planes in the air and, perhaps more frightening, cartridge casings on the ground. Later there would be “blackouts. . . night patrols, and searchlights beaming across the sky.” As the Luftwaffe turned from RAF airfields to the city centers of southern England, Guy would volunteer again, this time as a “fire-watcher.”

Images of the Battle of Britain.

Click thumbnail to view full-size
A Spitfire Mk. I--The "thoroughbred" of the RAF during the battle.Heinkel 111s over the English Channel.The Hawker Hurricane--the workhorse of the RAF during the battle.Contrails over St. Paul's cathedral.A bomb strikes home in London.A volunteer air observer.
A Spitfire Mk. I--The "thoroughbred" of the RAF during the battle.
A Spitfire Mk. I--The "thoroughbred" of the RAF during the battle.
Heinkel 111s over the English Channel.
Heinkel 111s over the English Channel.
The Hawker Hurricane--the workhorse of the RAF during the battle.
The Hawker Hurricane--the workhorse of the RAF during the battle.
Contrails over St. Paul's cathedral.
Contrails over St. Paul's cathedral.
A bomb strikes home in London.
A bomb strikes home in London.
A volunteer air observer.
A volunteer air observer.

The war naturally shifted research priorities, and this changed Guy’s life, too. On July 11, 1941, the BEIRA steam research formally concluded, and the next year Guy began defence research work at Langhurst, “a secret research facility” operated by the Ministry of Supply. Even today, information about the facility is not easy to come by.

Ironically, it made the Callendar’s life yet more idyllic in a way: the family moved to 44 Parsonage Road, Horsham, about 2 miles away from the lab. Guy would bicycle to work in good weather. There was a cow pasture behind the house, and from trees in their new yard the Callendars had surplus apples to give away. Here Guy set up a weather station; he would log daily observations nearly until his death.

Guy’s most important work at Langhurst was his first project. In June of 1942 he joined the team researching FIDO, the “Fog Investigation and Dispersal Operation.” As had been true since Victorian times, British weather was marked by dense fogs—most inconvenient for air operations! Instrument landings and take-offs were still years in the future, and Britain badly needed her air forces in her fight for survival. German bombers could not be allowed to pound London with impunity on every foggy night. Prime Minister Churchill himself authorized intense efforts to deal with the problem.

Guy’s background had made him and expert on combustion, and he became an important member of the FIDO design team. Particularly remarkable was his model testing, carried out at a large indoor London skating rink, Empress Hall; Guy used scale models and large fans to obtain vital data without building full-scale prototypes, significantly shortening the design process.

On November 4, 1942 the first test of FIDO came at Moody Down, Hampshire. Air Vice Marshal D.D. Bennet made the first clear weather test landings in February, 1943, and in July the first test under foggy conditions brought another success, with successive aircraft landing at 15 minute intervals. In November 19, 1943—just a year after the first test—FIDO was officially operational.

A FIDO landing--note line of flame on far side of runway.
A FIDO landing--note line of flame on far side of runway.

Ultimately, 2,486 aircraft landed using FIDO. Fuel consumption was prodigious—the system burnt 6,000 gallons of gas in just 4 minutes!—but administrators said it saved the lives of “over 10,000 airmen.” It was even suggested that FIDO had actually shortened the war by greatly increasing the operational capability of the Allied airforces in Britain. FIDO systems were considered for postwar use, but were far too expensive—in 1957 the hourly cost was estimated at 44,500 pounds sterling!

With FIDO operational, Guy worked on a number of different projects, including research on the efficiency of fuel cells, research on German aviation fuel as inferred from the spectrographic analysis of aircraft exhaust, not to mention the design and testing of fuel baffles, experimental forest-clearing devices, and fuel propellant systems (including flamethrowers—an application the pacifically-minded Guy must have disliked.)

The war years did not prevent Callendar from pursuing his research interests, however. 1939 saw a paper on “The Composition of the Atmosphere Through the Ages”; 1940, a review of observations of atmospheric CO2, and 1941, a review of spectroscopic measurements of the absorption band of CO2, the pressure broadening of spectroscopic lines, and the meteorological effects of atmospheric radiation. It drew together much widely-scattered research in useable form and proved quite influential, “drawing rave reviews.” Still more important was another study, co-authored with the eminent spectroscopist G.B.B.M. Sutherland, advancing quantitative knowledge of atmospheric gases other than water vapor. Even in 1943 and 44, he was able to write brief pieces on climate change in the North, and on variations in winter temperature.

An outdoor victory celebration.  Image courtesy Brian Atree and Wikimedia Commons.
An outdoor victory celebration. Image courtesy Brian Atree and Wikimedia Commons.
Stars & Stripes headline.  Image courtesy Wikipedia.
Stars & Stripes headline. Image courtesy Wikipedia.

The victory of the Allied forces in 1945 must have been celebrated in the Callendar household as it was everywhere.  Slowly life began to open up again, as British society rebuilt.  But the Callendars’ way of life did not change radically:  they remained in Horsham, and Guy continued to work at Langhurst, investigating combustion technologies, space heaters, and the generation of high-speed air currents, among other projects.

At home, Guy and Phyllis continued with their accustomed interests—in fact, in 1947 the 49-year-old Guy finally earned a tennis trophy, as he and men’s doubles partner J. Clark won the Horsham LTC championship!

Horsham Lawn Tennis Club today.
Horsham Lawn Tennis Club today.

Guy continued to write and to publish on climate.  Papers on atmospheric radiation and atmospheric CO2 appeared in 1949; articles on glacial response to temperature variations, and temperature trends in both England and Canada appeared in the early 50s.  Callendar also wrote letters, including a scientific correspondence with many prominent scholars of the day.  Especially notable in retrospect was Gilbert Plass, a young Canadian researcher who would himself soon play an important part in the development of CO2 climate theory.

Gilbert Plass.  Image courtesy of American Institute of Physics.
Gilbert Plass. Image courtesy of American Institute of Physics.

For example, at the 1953 Toronto Meteorological Conference, Plass and co-presenter E.W. Hewson reaffirmed most of Callendar’s 1949 ideas. Callendar received the news with quiet satisfaction.

(Already Plass—still only 33 and with his most important work yet ahead of him—had become sufficiently known as an authority on the CO2 theory of climate to be quoted by Time magazine and Popular Mechanics!)

Popular Mechanics piece, 1953.
Popular Mechanics piece, 1953.

By this time, the warming effect of atmospheric CO2 had become known as the “Callendar effect.” However, it was not uncontroversial even then. Roger Revelle and Hans Suess concluded in 1957 that the increase in CO2 was “quite improbable” to reach 10%, as Callendar had projected. (Recall that the actual increase has reached 40%!) Plass wrote to Callendar that “I think you have pointed out several ways that their conclusion could be in error and I feel that there are still several possible explanations.”

1958 would prove to be a pivotal year in several ways: Guy retired from the Ministry of Supply; the International Geophysical Year reached the culmination of its intensive investigations into Earth systems generally; and two Swedish scientists, Bolin and Eriksson, published an article which definitively clarified aspects of CO2 absorption by the world’s oceans. Their work vindicated Callendar’s projection of atmospheric CO2 concentrations.

Guy welcomed not only this result, but all IGY data-gathering. Particularly welcome was the CO2 monitoring project begun at Mauna Loa by Charles D. Keeling—another Callendar correspondent. Callendar’s late papers concentrate on temperature data from around the world, painstakingly examining the “homogeneity” of data from over 400 weather stations. Much of the work was directed toward a projected book, the working title of which was simply “Climate and Carbon Dioxide.” Unfortunately, this book was never completed, and only a few fragments were found in his papers.

Guy and Phyllis continued their life together in the now long-established patterns. Guy maintained his weather observations and his recreational pursuits—tennis continued to be important at least into 1962, when he received tennis supplies in celebration of his sixty-fourth birthday.

But after the excitement of the late 50s, the weather quite literally changed. The warming which had characterized all of Guy’s adult life came to what we can now recognize as a temporary reversal. In England, this cooling trend culminated in the bitterly cold winter of 1962-3. Callendar ruefully noted the cooling as he pondered his scientific legacy—and then trudged out into the snow to shovel the driveway.

Residents walking upon the frozen Thames during the "Great Freeze" of 1962-63, January 24, 1963.  Image courtesy Royal Windsor Website.com.
Residents walking upon the frozen Thames during the "Great Freeze" of 1962-63, January 24, 1963. Image courtesy Royal Windsor Website.com.
The Christmas tree near Windsor Castle during "The Great Freeze."  Image courtesy Royal Windsor Website.com.
The Christmas tree near Windsor Castle during "The Great Freeze." Image courtesy Royal Windsor Website.com.

But by the spring of ’64, such activities had become difficult. Tennis was out of the question, now; Guy was suffering from coronary disease. Yet he maintained what he could, keeping up his weather observations until October first. On the third, Guy died at home.

What of his legacy? He was right about so many things—the background nineteenth-century CO2 concentration level and its increase over the twentieth century; the importance of high-quality temperature data and the warming trend observed over much of his lifetime; the infrared spectroscopy of CO2 and its effect on “sky radiation”; and more. Yet he did not predict the cooling trend of the post-war years, and was at a loss to specifically account for it.

Actually, neither the warming of the 30s nor the cooling of the post-war years is thoroughly understood today. It is thought that solar forcings played a role, and low levels of volcanic activity may also have contributed. Yet in Meehl et al. (2004)—a paper that examined climate forcings over the twentieth century—the warming Guy observed so closely doesn’t seem to be fully accounted for by these factors. Some have suggested that cyclic patterns such as ENSO—the irregular alternation of El Nino & La Nina—may have played a role. We don’t know, yet—but it appears almost sure that Guy was wrong in thinking that the warming trend of his day was largely due to human emissions.

The National Climate Data Center global temperature timeseries.  The temperatures are presented as "anomalies"--differences from a baseline norm.  Note the "pause" in warming following WW II.  Image courtesy NCDC.
The National Climate Data Center global temperature timeseries. The temperatures are presented as "anomalies"--differences from a baseline norm. Note the "pause" in warming following WW II. Image courtesy NCDC.

But there are many ways to be right in science. Guy was wrong about the most central answer he made—he almost surely had not detected anthropogenic climate change. But he consistently asked the right questions—and asked them so well that he influenced an entire field forever. To name but a few instances, his detailed studies of temperature data; his reviews of infrared spectroscopy and his associated analysis of atmospheric greenhouse gas physics; and his examination of the carbon cycle—all proved crucial for the research efforts which followed. Had he been “correct” about the attribution of the warming trend observed during the first half of the twentieth century it could scarcely have made him more influential—though it surely would have made him better-remembered.

Everybody likes to be right, and Guy was no exception. But it’s hard not to conclude that—could he have known how influential his sustained efforts would turn out to be—this quiet Englishman would have been satisfied indeed.

This Hub is sixth in a series, preceded by "Global Warming Science, Press And Storms," the story of Nils Ekholm.

Ekholm's is a success story, and his success was the product of ambition, brains and hard work.  But it also exemplifies the moral courage and intellectual integrity to trust the data, even when the implications were troubling.

Or go right back to the beginning. Arguably the first scientific papers laying the groundwork for global warming science were the work of brilliant mathematician, and Napoleonic official, Joseph Fourier. Read about his life, work, and times in the first of these "Science of Global Warming" Hubs.

Please comment—half the fun is hearing from you. (But remember that Hubpages strives to be a pleasant and collegial place!) 15 comments

Hello, hello, profile image

Hello, hello, 6 years ago from London, UK

Thank you for doing so much research, a very comprehensive hub which I enjoyed reading so much. I have learned an awful lot from it.


sabu singh profile image

sabu singh 6 years ago

Great piece Doc Snow, well researched and presented. Thank you for adding to my knowledge on this subject that is close to my heart.


Doc Snow profile image

Doc Snow 6 years ago from Atlanta metropolitan area, GA, USA Author

Thank you in turn for your appreciative words! This one took a little time to pull together--which I suspect may be true for the next few hubs in the series, as well. (The next one will be on Plass, and though I've been able to collect some reminiscences from students, I'm still far from having the biographical depth of information I'd like.)

I acknowledged it in the hub, but my primary source for this was James Fleming's biography of Callendar. (He was able to access the Callendar archive at the University of East Anglia, as well as to speak to one of the Callendar twins directly.) I was able to borrow his book via an interlibrary loan--so thanks, too, to the Gwinnett County Libraries!


William R. Wilson profile image

William R. Wilson 6 years ago from Knoxville, TN

Wow. I am very impressed, with the writing and with the research! Is that I book deal I smell?


Doc Snow profile image

Doc Snow 6 years ago from Atlanta metropolitan area, GA, USA Author

Well, the book on Callendar was already written, so that took care of a lot of the research for me!

But thank you--and, "from your lips to God's ear!"


Neven 6 years ago

Great stuff, as always, Doc!


Doc Snow profile image

Doc Snow 6 years ago from Atlanta metropolitan area, GA, USA Author

Thanks very much, Neven!


dreamreachout 6 years ago

This is one of the best hub on hub pages and what makes it stand out is the subject .. A subject we are all concerned about and almost cant do anything about!! Reading this hub, I feel a little composed about the fact a little warming may not affect us that much and could be little beneficial as well!!

The person, Late Mr.Callender deserves all our salute for all his research at a time when the world was hardly bothered!! That he was a tennis champ adds to my respect for him as that is also my game and like olden days Britain, I learnt my game on grass courts here in India!!

To conclude, I believe the logical mind is above all science research, all concern and all hyper reaction!! There has been immense global weather changes over centuries .. Why that? Even topographical movements and other bizzare happenings!! Who can believe that today's Himalayas was once the Theus Sea!! In all of this the world and all its inhabitants has always survived and survived with elan!! So let us not make too much of the global warming, we will get adjusted!! Just imagine humans living in 100 degrees centrigade someday and the diaspora that time reading into the today's history and calling our age as a super ice age!! The history of mankind evolves in the most unlikely way!!

Great hub and pardon me for writing such a big comment!! Cheers!!


Doc Snow profile image

Doc Snow 6 years ago from Atlanta metropolitan area, GA, USA Author

Thank you for your kind words, dreamreachout. I'm glad you enjoyed the Hub--Callendar was indeed a great researcher, and a humble (though capable and determined) man. He seems to have lived a useful and well-balanced life.

I must say, though, I don't share your optimism about the ability of humanity to adapt to a warmer future with the grace you envisage. I suspect the species will survive, but in a much less expansive future--one in which the cultural riches which we have inherited may have to be jettisoned in a struggle to survive. As "cultural workers," you and I should not welcome such a prospect.

Remember, most of the species that ever existed are now extinct--I don't want us to join the majority! And the image of humans or other vertebrates living at 100 C is definitely a blood-boiling prospect!

Thanks for your most interesting comment--and I for one welcome the length. I look forward to delving into your Hubs at greater length, myself!

Interested readers can find dreamreachout here:

http://hubpages.com/@dreamreachout


suny51 profile image

suny51 6 years ago

Wonderful and terrific Doc Snow,we need many more in this series on these pages, people like Callender are really the ray of hope for this world.I sincerely hope the disaster staring us on our faces and fuming on our necks should be taken care of with such awareness hubs.Thank you.


Doc Snow profile image

Doc Snow 6 years ago from Atlanta metropolitan area, GA, USA Author

Hey, thank you, suny. Well, I do have several more Hubs in this series--there are 5 preceding this one, actually. They begin with the story of Joseph Fourier, genius mathematician and Napoleonic official, and proceed through to one of my favorites, the story of Nils Ekholm, meteorologist and (nearly!) an Arctic explorer.

All five Hubs are linked just above the Comments capsule, so you can navigate to any of them with a single click.

Thanks for dropping by--I look forward to checking out your stuff, too!


htodd profile image

htodd 5 years ago from United States

Great lens,Thanks for the info


Doc Snow profile image

Doc Snow 5 years ago from Atlanta metropolitan area, GA, USA Author

I appreciate your visit, and of course the kind words, htodd!


tekguyjeff 4 years ago

I happened across your article on Callendar and really appreciate an unbiased view. I am searching for truth on the following two questions:

1) point me to a recent scientific empirical study that concludes that increases in atmospheric CO2 causes more than about a 2C rise in atmospheric temperature.

2) Since water releases CO2 when it is warmed, how is it that the oceans are rising in temperature and becoming more acidic - at the same time?

So far, with many many times questioning various bloggers, I have received NO positive responces.


Doc Snow profile image

Doc Snow 4 years ago from Atlanta metropolitan area, GA, USA Author

Appreciate it, jeff.

Your first question is interesting; I'm not sure what you count as "empirical" or how recent "recent" is. I presume you know that CO2's forcing effect is roughly logarithmic, and therefore is specified in degrees *per doubling* of CO2? So I'm not sure whether or not this link will satisfy your wishes:

http://www.skepticalscience.com/detailed-look-at-c...

But it does point to a number of climate sensitivity studies--empirical and otherwise--within the last few years.

Your second question has a simple answer: the oceans (according to empirical studies) are currently acting as sinks of CO2, taking it up much faster than they are releasing it due to warming. As I understand it, this is possible because the equilibrium between atmospheric CO2 and carbonic ions in the oceans depends not only upon temperature but upon the partial pressure of the atmospheric CO2--but I think this bit can rapidly get complicated.

Time also factors in: in past deglaciations, orbital warming drove the release of CO2 from the oceans--and was in any case much, much slower than the current rise in atmospheric CO2. Today, combustion is driving the CO2 curve, which is in turn driving the warming. At some point, warming may indeed reduce or reverse the oceanic takeup of CO2. If and when that happens, we will have lost all effective influence on global warming--barring, of course, the heroic effort of massive "geo-engineering," such as injecting sulphate aerosols into the stratosphere.

    Sign in or sign up and post using a HubPages Network account.

    0 of 8192 characters used
    Post Comment

    No HTML is allowed in comments, but URLs will be hyperlinked. Comments are not for promoting your articles or other sites.


    More by this Author


    Click to Rate This Article
    working