The Hydrologic Water Cycle - Untaught Facts

All living beings need water to live. Water is an integral part of every culture worldwide, human or otherwise. Due to human activity, we know that some of nature's systems are breaking down. Climate change, for example, is heating up the air that water would normally have cooled down. Could the water cycle be one of the breakdowns?

Hydrologic Cycle Diagram

Following the blue arrows, you can see that water evaporates, rises as vapor, condenses into clouds, precipitates as rain and snow, flows down into lakes, rivers, and streams or absorbs into the ground, heading for the ocean to start the cycle again.
Following the blue arrows, you can see that water evaporates, rises as vapor, condenses into clouds, precipitates as rain and snow, flows down into lakes, rivers, and streams or absorbs into the ground, heading for the ocean to start the cycle again. | Source

Gas, Liquid, Solid

Light clouds just coalescing, not nearly ready to rain. Water in its gaseous form.
Light clouds just coalescing, not nearly ready to rain. Water in its gaseous form.
Rain is water in its liquid form, having cooled down from vapor (gas).
Rain is water in its liquid form, having cooled down from vapor (gas). | Source
Snow is water in one of its solid forms. Snow will melt to liquid, then evaporate to vapor as it heats up.
Snow is water in one of its solid forms. Snow will melt to liquid, then evaporate to vapor as it heats up. | Source
Water stored as a solid - iceberg and snow.
Water stored as a solid - iceberg and snow. | Source
Water stored as a liquid in a lake.
Water stored as a liquid in a lake. | Source
Water heading for storage in the ground.
Water heading for storage in the ground. | Source
The biggest water storage place of all - the ocean.
The biggest water storage place of all - the ocean. | Source

Physical States of Water:

Water alternates between gas, liquid, and solid. What makes the difference is the temperature. Really low temperatures cause water to freeze, medium temperatures produce a liquid form, high temperatures cause water to evaporate into gas (water vapor).

All over the world and in the air water is constantly changing between these three forms. As it does, it also changes location, as shown by the blue arrows above.

When liquid is heated it changes into vapor that rises. When vapor is cooled it coalesces into rain, sleet, hail, or snow that falls. When ice and snow (solid water) is heated, it melts into liquid that flows to lower levels, where it's stored, until it heats again, evaporates, and rises again.

Thus the water cycle looks like this (from right to left on the diagram): Evaporation, condensation, precipitation, flow (runoff), storage, and repeat. Let's examine each of these stages in a little more detail, starting with storage, since that's the stage that humans have deemed most useful to civilization.

Rain Water Storage

You will notice in the diagram (large arrows) that there are five main places of "storage" - where water in one of its three stages collects and holds:

  1. As a solid water is stored as ice and snow, always where temperatures are cold - the tops of mountains, the north and south poles and countries and oceans near them (icebergs), and often mid-country as well, near mountains and lakes in winter. Water is held in that form until temperatures rise and it melts, flowing down to join one of the other storage places. This is where humans enjoy "winter sports" like skiing, ice skating, and snowboarding. This kind of storage has been breaking down rapidly in recent years.

  2. As a liquid water is stored in three main places: Surface water, groundwater, and oceans. Surface water includes the whole category of lakes and fake lakes (dams), rivers and streams. Lakes and dams are considered storage areas, since water sits there for some time, while slowly sinking into the earth, evaporating into the sky, or running out via a river or two. Water stays in a lake long enough to grow life forms, some of which we fish out.

  3. Groundwater is water that has sunk into the earth all the way to its rock base, if it has one (groundwater basin). The earth is like a giant sponge. It holds water until needed to replenish the surface water. Meanwhile trees, plants, and humans draw from it for their own needs.

  4. The oceans hold the greatest quantity of water in storage. Because it is salty, humans don't like to drink it and can't use it for manufacturing, without rusting or encrusting their machines. But these vast bodies of water, filled with life of their own, are the greatest source of evaporation, meaning that fresh water ultimately comes from the oceans.

  5. As a gas, water that has evaporated and risen into the air stays there as vapor and clouds, until it has cooled down enough to condense into rain. "Humidity" is the term that measures the amount of water vapor being stored in the air. Water in the air helps keep skin moist and soft.

Water Evaporation

When water heats up with the sun or hot air or lava beneath the earth, it's molecules start spinning faster and further apart, which turns it eventually into gas and geysers. Up it goes, spinning into the air, higher and higher as it gets hotter. Eventually the water vapor reaches a stasis point in the atmosphere, where the air starts to cool and the vapor stays where it is, blown about by hot air and vapor still rising, which mixes and changes places with cooler air. This movement is called wind.

Water evaporates from any surface with water - the ocean, lakes, dams, rivers, streams, moist earth, and snow and ice. Moisture is also added to the air via sweat from humans and animals, and its counterpart - transpiration from plants, especially trees. All of this moisture rises into the atmosphere, spiraling up until it reaches cooler air. This is evapotranspiration.

From evapotranspiration to condensation - water vapor condensing into clouds.
From evapotranspiration to condensation - water vapor condensing into clouds. | Source

Condensation of Water Vapor

As the water molecules spin and others rise to join them, they begin to coalesce in the cooler air above. The more humid the air, the faster they coalesce. At 35,000 feet, even in the heat of summer, the air can be -70C (-94F). In cold air molecules spin more slowly and, being attracted to each other, gather to form clouds. This is condensation. Ground fog is a low level condensation.

In a sense, condensation is the opposite of evaporation. Where evaporation is the change of liquid into gas, condensation starts the process of changing gas back into liquid. All it needs to complete that process is some kind of icy core around which rain, snow, or hail can form.

In nature, this is provided mainly by bacteria (described next). Whether colonies of millions of bacteria grow in the atmosphere or all are blown up from the earth, is not yet known. What we do know is that certain kinds of bacteria turn vapor into rain, hail, or snow. Volcanic dust and carbon dust from wildfires can also generate precipitation at higher, colder levels of the atmosphere.

World Cloud Cover

Note that all of the land masses clear of cloud cover are desert or near desert areas, including the SW United States. Note also the heavy cloud cover over the Amazon Jungle in South America and the Congo in Africa.
Note that all of the land masses clear of cloud cover are desert or near desert areas, including the SW United States. Note also the heavy cloud cover over the Amazon Jungle in South America and the Congo in Africa. | Source
Evidence of the bacterium Pseudomonas syringae on a leaf. The bacterium entered the leaf by freezing and softening its skin.
Evidence of the bacterium Pseudomonas syringae on a leaf. The bacterium entered the leaf by freezing and softening its skin. | Source
Clouds turning into rain from the action of ice-nucleating bacteria.
Clouds turning into rain from the action of ice-nucleating bacteria.
Recent rainstorm in Pasadena, CA.
Recent rainstorm in Pasadena, CA. | Source
"Rain is grace; rain is the sky condescending to the earth; without rain, there would be no life." 
- John Updike

Precipitation into Rain, Hail, or Snow

Pseudomonas syringae is the name of an ice-nucleating bacteria that causes rain. Unfortunately, it is known best for the blight it creates on cash crops. The bacteria freezes a plant's skin to soften it, so it can feed on juices beneath, then reproduces itself to form colonies. That process leaves black marks on fruit and leaves. Growers have been trying to eradicate the bacteria for decades.

Up in the atmosphere, where bacterial colonies have been blown by the wind, the coldness of each bacterium turns water vapor into raindrops. Cooling air speeds the process, converting nascent cloud cover into storm clouds. Bacteria and storm clouds multiply and spread, until they are thick and heavy enough that the raindrops (or snow) that form them drop from the sky.

For drops to reach the ground, the air under the clouds must be saturated or cool. But with enough bacteria in the air, it can rain even when the temperature is warm, although the drops will be smaller. This, along with hail and snow, is called precipitation.

The fact that rain, ice, and snow both clean the air and cool it down makes ice-nucleating bacteria a key component in counteracting global warming. The bacteria also provides a key for how to more evenly distribute rain throughout the earth.

Man has taken some control of this stage of the cycle by artificially cloud seeding with silver iodide. The cellular structure of silver iodide, discovered by Dr. Bernard Vonnegut in 1949, is a close replica to ice. Like the ice-nucleating bacteria, it transforms water vapor into precipitation. Countries all over the world are now using cloud seeding to enhance or create rain where none existed before.

The Flow of Water - Runnels, Rivers, & Streams

The flow stage of the water cycle describes the movement of water after it hits the ground. Rainwater saturates an area, flowing across the ground's surface to lower elevations. It fills up rivers and streams that flow to lakes and dams, and ultimately to the lowest elevation of the sea - quickly in the case of young, straight rivers and slowly, in the case of meandering ones.

Rivers run from high elevations to lower ones on their way to the sea.
Rivers run from high elevations to lower ones on their way to the sea. | Source
Some parts of the Mississippi River still meander. Note the curves beyond the bridge.
Some parts of the Mississippi River still meander. Note the curves beyond the bridge. | Source

Rivers fall straighter where the elevation is steeper, pulled by gravity. Older, meandering rivers slow water down, which gives it time to be absorbed by the earth it passes over. The Mississippi River used to be an old, meandering river, saturating the ground for miles and miles on either side as it flowed south. There was once plenty of water in its aquifer from Canada down to the Caribbean Sea.

Unfortunately, humans like rivers straight, allowing for easier and faster transportation via boats, the production of electricity, and controlled diversion for agriculture. So humans dredged crooked rivers to make them deeper, and cut paths between meanders to make them flow straighter.

This prevented the ground from absorbing rainwater, lowering the storage level of the aquifer. With no water in the aquifer to replace water that evaporated or flowed to the sea, rivers and streams started to run dry. Since the Mississippi River was dredged, straightened, and dammed, many states through which it flows have experienced droughts.

As surface water flows from the mountains and lakes through ever-lower rivers and streams out into the ocean, gravity pulls groundwater slowly toward the lower levels of rivers and streams, replenishing what goes to the ocean, where it evaporates again. This keeps the rivers and streams flowing until all the groundwater is gone . . . or until it rains.

Until man started sucking out the groundwater for his own use, and blocking its replenishment by straightening rivers and building cities, most rivers and streams in the United States stayed full most of the year.

The oceans are forever being replenished and fed by fresh water flowing down from the mountains, and the richer, saltier groundwater flowing out from the land near the oceans. Groundwater cleans the earth, collecting loose salts (and man-made chemicals) as it passes through, carrying them along to its eventual destination in the ocean. Those salts then help feed coastal ocean life, while the chemicals help kill it.

Traffic dries the air, roads and cities block groundwater replenishment - Los Angeles.
Traffic dries the air, roads and cities block groundwater replenishment - Los Angeles. | Source
Stripping the land of native vegetation, then using presticides to kill insects, including beneficial bacteria, disturbs the rain cycle.
Stripping the land of native vegetation, then using presticides to kill insects, including beneficial bacteria, disturbs the rain cycle. | Source

Breakdown of the Water Cycle

Straightening major river systems is not the only way humans have tampered with the natural water cycle. Many other ways have already been mentioned and there are still others. Here are some of them:

  • Straightening rivers, so water runs straight to the sea, instead of being absorbed by the aquifer.

  • Blocking the earth's surface from absorption by building cities, and laying concrete and asphalt.

  • Cutting down forests that provide moisture to the air and cool the earth, so rain can fall. (This map shows the extent of deforestation worldwide in red.)

  • Using pesticides to kill the bacteria that helps create rain. Also stripping the earth of native plants upon which the bacteria can grow.

  • Drying and heating the air in city areas with car exhaust and airborne pollutants from manufacturers. The rising heat pushes clouds away and the chemicals disburse whatever rain starts to form.

Rio Grande River running free through Albuqurque, NM.
Rio Grande River running free through Albuqurque, NM. | Source

Water-Sustainable Culture

To have a sustainable culture, to live in harmony with the environment, how can humans respect and wisely utilize the water where they live? How can we replicate nature's rain cycle in areas where it currently does not rain? How can we redirect rain from areas where it rains too much?

Learning more about the rain cycle is the first step to answering these questions. Figuring out how to apply what we know is the second. What ideas do you have, based on what you know now?

Rain Cycle Described in Sign Language

More by this Author


Comments 11 comments

billybuc profile image

billybuc 4 years ago from Olympia, WA

I wonder how many times I have taught this lesson. Not as well as you do in this hub for sure. Love the sign language video at the end. Simply an excellent tutorial on the water cycle.


watergeek profile image

watergeek 4 years ago Author

Thanks billybuc - Sounds like you have a variety of skills yourself, using meters and teaching. Have you worked in the water industry at all?


CWanamaker profile image

CWanamaker 4 years ago from Arizona

We all need to do our part to work toward a sustainable future. Education is the first step. This is a very thorough hub. Great Job


watergeek profile image

watergeek 4 years ago Author

Thanks CWanamaker - You're right, of course, and I'm hoping that educating people will get them fired up with ideas for change. When it becomes the norm for people to think in terms of healthy water supply, not only will each person resist destruction imposed by economic growth, but the companies themselves will notice the potential for damage before they even cause it.


lindacee profile image

lindacee 4 years ago from Southern Arizona

You've done a wonderful job explaining the earth's water cycle. Here in Vegas, we have a series of washes that divert certain waste waters and rain/flood waters into the Colorado River. That helps supplement the supply of potable water for valley residents and those in Southern California that depend on the river for water. Voted up, useful and interesting


watergeek profile image

watergeek 4 years ago Author

Thanks lindacee - Being as how Las Vegas is not too far from here, and there's a major water conference there in October every year, I've kind of been interested in Vegas water supply. Didn't know you had all those washes. Are they natural or manmade?


leahlefler profile image

leahlefler 4 years ago from Western New York

What a great (and thorough) guide to the water cycle, watergeek! The science museum in Rochester, NY has a really cool water cycle exhibit. Kids can climb up a wavy climber to reach the "clouds," and come down as "raindrops." I thought it was a fantastic way to explain the basic cycle to kids.


watergeek profile image

watergeek 4 years ago Author

That sounds really fun Leah. The kid in me wants to go!


tamarawilhite profile image

tamarawilhite 4 years ago from Fort Worth, Texas

Excellent resource.


Tusitala Tom profile image

Tusitala Tom 3 years ago from Sydney, Australia

Magnificent Hub, WaterGeek! Very thorough and containing so much research and good advice. Enjoyed the read.

Have you read anything on Dr. Masuro Emoto? I placed a Hub (my 2nd on him) on my own Hubpages only yesterday. I'm sure you can find out about him on Google.

Best regards.


watergeek profile image

watergeek 3 years ago Author

I looked him up in Wikipedia just now, wanting to make sure he was who I was thinking of . . . he wasn't. And Wikipedia didn't have much good to say about him. I'll have to read your articles to counteract it. Thanks for the compliments, Tusitala Tom.

    Sign in or sign up and post using a HubPages Network account.

    0 of 8192 characters used
    Post Comment

    No HTML is allowed in comments, but URLs will be hyperlinked. Comments are not for promoting your articles or other sites.


    Click to Rate This Article
    working