Solving Mixture Problems Part Two

Solving Mixture Problems Part Two

This hub is a sequel to the hub “Solving Mixture Problems”. In this hub I present additional four problems with their solution. Hope you will enjoy this.


Problem Number One :

How many gallons of water must be evaporated from 100 gallons of 75 % salt solution to increase the concentration to 90 % ?

Solution :

Let X = Amount of water that must be evaporated

Original solution :

Amount of solution : 100 gallons

Amount of salt in the solution : 75 % of 100 gallons

Amount of water in the solution : 25 % of 100 gallons

Resulting solution :

Amount : 100 – X

Amount of salt : 90% of (100-X)

Amount of water 10% 0f (100-X)

Working equation:

.25(100) – X = .10 (100 – X )

25(100) – 100X = 10 (100 – X)

2500 – 100X = 1000 – 10 X

-100X + 10X = 1000 – 2500

-90 X = -1,500

90X = 1,500

(1/90) 90X = 1,500 (1/90)

X = 16.67 gallons

The amount of water that must be evaporated is about 16.67 gallons


Problem Number Two :

A radiator that holds 16 quartz is full of a solution of 30% alcohol. How much of this solution must be drawn off and replaced with pure alcohol in order that the contents of the radiator may be 55% alcohol ?

Solution :

Let X = Amount of original solution that must be drawn and replaced with pure alcohol

Original solution:

Amount of solution : 16 quartz

Amount of alcohol : 30% of 16 quarts

Amount of water : 55 % of 16 quartz

Resulting solution :

Amount of solution: 16 quatz

Amount of alcohol : 55% of 16 quartz

Amount of water : 45% of 16 quartz

Working equation :

.30(16) - .30X + X = .55(16)

30(16) - 30X +100X = 55(16)

480 + 70X = 880

70X = 880 – 480

70X/70 = 400/70

X = 5.71 quartz


Problem Number Three :

A 200 millimeter shampoo with 80% cleansing power is to be diluted with water. This is done by drawing out some amount and replacing it with water. Agnes wants a mild shampoo with 60% cleansing power. How much must she draw off and replace?

Solution:

Let X = Amount of solution must be drawn off and replace

Original solution :

Amount of solution : 200 milliliters

Amount of cleansing power : 80% of 200 ml

Amount of water : 20% of 200 ml

Resulting Solution :

Amount of solution : 200 ml

Amount of cleansing power : 60% of 200 ml

Amount of water : 40% of 200 ml

Working equation :

.20(200) - .20X + X = .40 (200)

20 (200) – 20X + 100 X = 40 (200)

4000 + 80X = 8000

80X = 8000 – 4000

80X = 4000

80X/80 = 4000/80

X = 50 milliliters


Problem Number Four :

Lynn, a chemist mixed 40 mL of 8% HCl acid with 60 mL of 12% HCl acid solution. She used a portion of this solution and replaced it with distilled water. If the new solution tested 5.2 % HCl acid, how much of the original solution did she use ?

Let X = Amount of original solution used and replaced with distilled water.

Step One : Find first the percentage HCl in the original mixture

.08(40) + .12(60) = X 100

8(40) + 12(60) = 10000X

320 + 720 = 10,000X

1,040 = 10,000X

10,000X = 1,040

10,000X/10,000 = 1,040 /10,000

X = 10. 4% HCl in the original mixture

Step two :

Amount of original solution: 100mL

Amount of HCl : 10.4% of 100 mL

Amount of Water : 89.6 % of 100 mL

Resulting solution :

Amount : 100 mL

Amount HCl : 5.2 % of 100 mL

Amount of water : 94.8% of 100 mL

Working equation :

.896(100) - .896X + X = .948(100)

896(100) – 896 X + 1000X = 948(100)

89,600 + 104X = 94,800

104X = 94,800 – 89,600

104X = 5,200

104X/104 = 5,200/104

X = 50 milliliters of the original mixture must be drawn and replaced with distilled water.

More by this Author


Comments 3 comments

Dave Mathews profile image

Dave Mathews 5 years ago from NORTH YORK,ONTARIO,CANADA

Ate Cristina: All of this is so confusing to me. I'm so happy that you understand it and can explain it in such a manner. Thank you.


cristina327 profile image

cristina327 5 years ago from Manila Author

Thank you Dave for appreciating this hub. Your visit and comments are much appreciated. Blessings to you always. Regards.


susie 4 years ago

this is very useful...............thanks....

    Sign in or sign up and post using a HubPages Network account.

    0 of 8192 characters used
    Post Comment

    No HTML is allowed in comments, but URLs will be hyperlinked. Comments are not for promoting your articles or other sites.


    Click to Rate This Article
    working