N-P-K (Nitrogen, Phosphorus, and Potassium) Fertilizer

Back of fertilizer bag.
Back of fertilizer bag. | Source

Nitrogen, phosphorus, and potassium (N-P-K) are the three major nutrients vital for plant life. Each nutrient has different roles within plants, and different fertilizers contain varying concentrations of each nutrient. Most fertilizers contain small amounts of secondary nutrients and micronutrients, which are needed by plants as well. Each nutrient is available in different applications and formulations.

Understanding fertilizer labels and what each nutrient provides to plants is essential when growing lawns, vegetables, fruits, and ornamental plants.


Fertilizer bag with formulation listed in bold letters. 13% N, 13% P, 13% K
Fertilizer bag with formulation listed in bold letters. 13% N, 13% P, 13% K | Source

Reading Fertilizer Labels

Fertilizer labels have 3 numbers separated by hyphens, commonly called the NPK formula. Example: 10-5-15 . The numbers represent nitrogen (N), phosphorus (P), and potassium (K) respectively, so the example above would contain 10% nitrogen, 5% phosporus, and 15% potassium per bag. The remaining percentage (70%) consists of fillers to make it easy to handle and spread.

There are many other nutrients needed for plant growth, including secondary nutrients and micronutrients. Fertilizers that contain secondary and micronutrients are just as beneficial to plants.

Source of nitrogen on fertilizer bag
Source of nitrogen on fertilizer bag | Source

Nitrogen

Nitrogen is the most abundant element in the Earth's atmosphere, but atmospheric nitrogen is inert and unavailable to plants. Nitrogen must be combined with other molecules before plants can use it. Microorganisms are essential for transforming organic matter within the soil into useable nitrogen.

Nitrogen Use in Plants
Nitrogen is a major component of chlorophyll, which is the compound that plants use to transform sunlight, water, and carbon dioxide into useable sugars. This process is called photosynthesis and is performed by every plant. Nitrogen is also a major component of amino acids, which are the building blocks of proteins. Some proteins are involved in the structure of plant cells, while others act as enzymes that allow for vital biochemical reactions.

Nitrogen Applications
Common nitrogen fertilizers are anhydrous ammonia, urea, solutions, ammonium sulfate and ammonium nitrate. Anhydrous ammonia contains the most nitrogen but needs to be injected into the soil to prevent dissipation into the air. Urea is the most common and easiest source to obtain, considering it is simply animal urine.

Phosphorus

Phosphorus is not found in its elemental state, but is bound with other elements to create a useable form. Uptake of phosphorus is enhanced by mycorrhizal fungi that grows in tandem with the roots of plants.

Phosphorus in Plants
Phosphorus plays a large role in the transferring of energy within plant structures. Organic compounds that contain phosphorus are used to transfer energy from one reaction to drive another reaction within plant cells. Processes that require large amounts of energy rely on phosphorus, especially during the production of ATP - a useable form of energy produced through photosynthesis.

Phosphorus stimulates early plant growth and hastens maturity. It is also vital within the building blocks of chromosomes and genes.

Phosphorus Applications
Superphosphate of lime is a mixture of two phosphate salts - calcium dihydrogen phosphate and calcium sulfate dihydrate. This is produced by the reaction of sulfuric acid and water with calcium phosphate.

Organic phosphorus sources from animal manures. composts, and biosolids (sewage). Retail biosolid fertilizer (such as Milorganite based in Milwaukee, WI) is treated and sterilized before being sold. Biosolid fertilizer is a very large recycling effort around the world. Many municipalities spread sewage solids on farm fields for free.

Phosphorus Restrictions
Several areas in the U.S. do not allow phosphorus application unless seeding, or if the soil is proved to be phosphorus deficient via a soil nutrient test. Check local and regional laws before applying phosphorus. Regulations on phosphorus have been put into place to protect surface waters from algae blooms caused by excessive use. Run-off is a major contributor to high phosphorus levels in surface waters. Although, applications of organic matter that contain phosphorus are not regulated.

Potassium

Potassium in nature is only available in ionic salts. It is commonly found dissolved in seawater and is within many minerals.

Photosynthesis

Potassium helps fight disease and promotes rigorous growth by acting as a catalyst for enzymes during photosynthesis. Potassium is also a major factor in blooming and quality of fruit. Photosynthesis produces a basic energy form called ATP. This source of energy needs to be balanced by potassium. Deficiencies in potassium causes the rate of ATP and photosynthesis to decline.

ATP Transport
Potassium plays an essential role in the transport of ATP. Deficiency in potassium causes the transport system to lag and less ATP is available to the plant.

Potassium & Stomates
Stomates are tiny pores that allow plants to exchange carbon dioxide, moisture, and oxygen. Potassium is essential for stomates to function properly. Potassium in cells near stomates causes the cells to swell with water and open. Gases can be exchanged when the stomates are open. Potassium is drawn away from cells during times of drought, which causes the pores to close. Closed pores prevent moisture from escaping and allows plants to live through periods of drought. Potassium deficiency slows down stomate activity causing the plant to lose vital moisture.

Potassium Applications
Potassium is commonly sold in the form of potash, which consists of manufactured water-soluble salts that contain potassium. Many years ago, people mixed ashes with water and used the slurry as a fertilizer, hence "Pot-Ash." This method of mixing hardwood ash and water is still used today.

Compost and kelp meal are also used for potassium fertilizer applications

More by this Author

  • Organic vs Non-Organic Soil
    6

    There are many differences between organic and non-organic soils. Mulch, compost, and manure are organic and will transform a nutrient deficient soil into a rich organic environment for plants. Perlite, vermiculite,...

  • How to Propagate a Jade Plant
    10

    Jade is a succulent plant native to South Africa, and is a very common houseplant. Jade is easy to care for, requires little watering, and is easily propagated. Propagating jade is the most rewarding part of growing...

  • How to Take Care of a Yucca Plant
    1

    Yuccas are very common, especially in arid regions of the Americas. The yucca plant is easy to care for and has similar requirements to that of cacti. Proper sunlight and soil, along with watering and fertilizer...


Comments 2 comments

sphesihle paul ndlovu 4 years ago

i'd like to thank the way you guys have displayed everything


The Dirt Farmer profile image

The Dirt Farmer 4 years ago from United States

A good hub for beginning gardeners! I've linked it to one of my hubs on using urine as fertilizer. Take care, Jill

    Sign in or sign up and post using a HubPages Network account.

    0 of 8192 characters used
    Post Comment

    No HTML is allowed in comments, but URLs will be hyperlinked. Comments are not for promoting your articles or other sites.


    Click to Rate This Article
    working