Geothermal energy: The How Too

The basics of geothermal energy

The basics of geothermal energy rely on the natural internal heat of the earth to drive a turbine connected to a dynamo or generator.
The basics of geothermal energy rely on the natural internal heat of the earth to drive a turbine connected to a dynamo or generator. | Source
Once we have tapped into a heat source, we can use the differential to turn a turbine as a source of power.
Once we have tapped into a heat source, we can use the differential to turn a turbine as a source of power.
This is an actual geothermal plant in operation. It is much safer and greener than many of the alternatives.
This is an actual geothermal plant in operation. It is much safer and greener than many of the alternatives. | Source
Here are some natural steam vents where water has come into contact with something hot deep within the earth. This is a natural for a geothermal power production facility.
Here are some natural steam vents where water has come into contact with something hot deep within the earth. This is a natural for a geothermal power production facility. | Source
Old Faithful in Yellowstone National Park is a vent where steam is being formed in contact with a substantial magma chamber under the super volcanic caldera that makes up this park.
Old Faithful in Yellowstone National Park is a vent where steam is being formed in contact with a substantial magma chamber under the super volcanic caldera that makes up this park.

Geothermal energy has been around and used for thousands of years

With the recent disasters of the BP oil spill in the Gulf of Mexico (2010) and the nuclear disaster in Japan after the 8.9 earthquake and tsunami that damaged five nuclear cores and the subsequent meltdown (2011) of one of them that is second only to Chernobyl should be inspiration enough to move onto an alternative source of energy. That alternative, that already is in use in a few countries, is geothermal energy. It has proven to be reliable for the extent of the time it has been in use. The first geothermal steam powered electrical generator was developed and placed in use in 1904 in the US. Before that, First Nations were known to build homes around natural vents to capture natural heat for the last 10,000 years. Romans used it to heat their famous baths, some of which are still working and in use. British Columbia boasts the Harrison Hot Springs that are used by tourists for curative purposes all year round, For most of the history, these systems were passive, but in modern times, we have developed active geothermal plants that do useful work.

Geothermic or geothermal energy is power that is sourced from the internal heat of the Earth itself and is put into use in heating homes or driving steam powered turbine-dynamo pairs. Geothermic energy has been proven effective and efficient, with one of the highest efficiency ratings that can be given to any energy conversion system. Many areas of the world are suitable for obtaining and using this energy, but most of them remain unused in flavor of other sources such as fossil fuels, nuclear, hydro or wind energy. Geothermic energy where extracted has proven to be reliable over extended periods of time. Currently, this is the form of energy that is used in places like Iceland, the Philippines, California, Italy, Africa, New Zealand and many other places. Iceland boasts the highest percentile of its power production based on geothermic sources. Sadly, neither Washington State, nor British Columbia nor Alaska boast any geothermal plants whatsoever. Yet these regions have hot springs and natural thermo vents galore showing that internal heat is very close to the surface and reasonably accessible at little initial cost.

Some sources of this energy are natural, occurring around hot springs, like the ones found Near Harrison British Columbia, or in Yellowstone National Park in the US. Others can be created where there are known hot places near the surface of the earth, but are dry. Within the earth, near the source of heat, the is sometimes a reservoir of water which gets super heated by the magma that is close by and supplying the heat. The water then works its way to the surface in the form of hot water springs or geysers to erupt on the surface in jets of super heated steam. Dry hot spots can be developed by injecting water into the hot zone and then tapping the heated water or steam to do what we want, to generate power or to heat homes directly as is done in Iceland. With the tapping of this energy source, it may be even possible to lessen the threat of volcanic eruptions or earthquakes or reduce their impact.

The best places for constructing geothermal plants are near the plate boundaries of the planet where large tectonic plates jostle and rub against one another on the lithosphere of the planet. This is also true for any dynamic planet that functions in a similar manner as the earth. This natural tendency creates plenty of natural hot spots. This is one reason why Iceland is ideal, but the western coast of the Americas and eastern coasts of Asia are also ideal for similar reasons. The ideal spot is where super heated water or steam erupts from a hot spot below the surface. Alternatives are close to active volcanoes, such as found in the Hawaiian chain of islands. A power plant can be placed nearby to capture the steam and use it to power turbines for the generating of electricity. The steam can also be used to heat buildings directly without turning it into something else. The size of the power plant is limited only by the amount of the natural resource available. As it stands now, most natural sources of geothermal energy just vent into the air without being used.

To tap this source, engineers need to drill down toward the hot spot. There need to be two shafts that are interconnected. One shaft is for injecting water into the subterranean hot spot. This one would be fitted with a one way valve similar to the valve in an engine block that prevents a back flow of water and insures a one way flow of fluid, i.e., cold water to the magma region and hot water of steam from the magma region. The second pipe is used to conduct super heated steam to the turbine-dynamo pair to generate the motion needed to generate electrical power. Some of the power would be taken to run the injection pumps, but most of it can be delivered to the electrical grid for use in the community. The vented steam can be collected by cooling towers to condense it back into water for recycling, much like is done in a closed loop in nuclear power plants. This would be useful in regions where there is a shortage of water.

Finding a suitable spot where the plant can be secured to existing rock is usually not a problem, especially near volcanic regions such as in Iceland. It there is a problem of a lack of natural rock, then a large concrete slab can be laid down to anchor the whole power plant in place. Natural cracks in the rock may be used to penetrate the earth with a network of delivery and uptake plumbing to harvest the natural heat. If not, we can certainly drill our own network with existing oil rig technology, The rest is straight forward off the shelf technology that already is in place at hydro, fossil fuel and nuclear facilities, but without any of the risks associated with the methods now being used.

Geothermal plants lend themselves well to construction on all size levels. The very first electrical producing plant could only light four light bulbs, Modern ones can power whole cities. In fact, anywhere one can find a source of heat from the earth, is a candidate for setting up a geothermal plant.


A small geothermal plant.

A much larger geothermal plant

Iceland; the world leader in geothermal energy

Meanwhile, BC is still in the looking stage despite huge untapped geothermal resources

Geothermal Energy Information

Geothermal Energy: An Alternative Resource for the 21st Century
Geothermal Energy: An Alternative Resource for the 21st Century

This book examines and explains all that is needed to know about this energy source for the 21st century and beyond. It details where to look for hot spots, how to tap them and run a turbine-generator system to create electrical power from the heat of the earth.

 
Alternative Energy For Dummies
Alternative Energy For Dummies

This alternative energy book from the Dummies series covers the gamut of alternative energy and so is not exclusively on geothermal power. It is a good source for an overview of a wide and emerging field.

 
Geothermal Energy: Using Earth's Furnace (Energy Revolution)
Geothermal Energy: Using Earth's Furnace (Energy Revolution)

From hot water for swimming pools in the dead of winter, to baths, to home heating and ultimately to light up our lives with power generated from the heat of the earth.

 

More by this Author

  • End Planned Obsolescence
    5

    One of the chief contributions to pollution is planned obsolescence that results from under engineering products and continual upgrades that make yesterday's products undesirable. New developments spur this process on,...

  • Geo-engineering
    1

    Geo-engineering simply put is the process of engineering the entire plant or engineering on a planet wide scale. Projects like vast pipelines covering thousands of mile, chemtrials to cut down on sunlight to cool the...

  • The French Revolution, Locke and Rousseau
    2

    The French Revolution was a seminal moment in European history that had wide felt impact. The revolution had its inspiration by way of Rousseau and Locke, two prominent philosophers of the era.


Comments 6 comments

christopheranton profile image

christopheranton 5 years ago from Gillingham Kent. United Kingdom

Thanks for a very interesting article. It seems to me that the powers that be are mad not to be investing big time in such a very useful source of energy.

Let's hope some of them read HubPages.


syzygyastro profile image

syzygyastro 5 years ago from Vancouver, Canada Author

I'm certain that they have not overlooked it. However, big oil has a vice grip on the economy and many CEOs of big oil work in the government. Today we have so many gas guzzlers it's like we are caught in a permanent trap. Solution offered, nuclear energy, a spin off of the A-bomb program. We have to consider a safer way to produce power right now, considering the wake up call in Japan that got me moving on this front again.

Well the answer already exists and it may take the people to follow through. We can't wait on the kind heartedness of those who profit from oil and nukes.


amillar profile image

amillar 5 years ago from Scotland, UK

A very interesting article. I'm for anything that takes us away from fossil fuels, and, as you say, the current disaster in Japan brings nuclear back it question.

Up and useful.


Robwrite profile image

Robwrite 5 years ago from Bay Ridge Brooklyn NY

Not being a scientifically minded-person, I marvel at your compendious knowledge of science. This situation in Japan only reinforces how we need to look into alternate energies. Solar; wind; geo-thermal; We need to change things!


lightning john profile image

lightning john 5 years ago from Florida

Hi there I'm sure that you have seen this by now.

Turning salt water into fuel.


lightning john profile image

lightning john 5 years ago from Florida

I'm sorry I couldn't get the video. Go Youtube Salt water fuel

    Sign in or sign up and post using a HubPages Network account.

    0 of 8192 characters used
    Post Comment

    No HTML is allowed in comments, but URLs will be hyperlinked. Comments are not for promoting your articles or other sites.


    Click to Rate This Article
    working