# Fibonacci series in C, Java & C#

## What is Fibonacci?

Fibonacci (also known as **Leonardo of Pisa**, **Leonardo Pisano**, **Leonardo Bonacci**, **and Leonardo Fibonacci**) is 13^{th} century Italian mathematician. He is known to our world because of number sequence which he used in his book and fibonacci series was one of them. You can know more about Fibonacci on** Wikipedia**.

## What is Fibonacci Numbers?

In math world, **Fibonacci series** is the number sequence in which each number is the sum of the two previous numbers. The sequence begins with 0 and 1. The next number would be sum of 0 & 1. This process will continue till nth number.

From above table you can see that value in the 2nd location is the sum of previous two values (i.e. values present in location 0 and 1). Similarly value of 6th location is sum of value of 4th and 5th. This is how **Fibonacci numbers** can be generated. I hope logic for the **Fibonacci number** is clear and we can move to example for better understandings. Below example will give you **Fibonacci number** of the given index or location, you can refer above image for the same.

## Function or method for Fibonacci number series:

int GenerateFibbonacciSeries(int index) { int lastNo = 0, currentNo = 1, temp = 0, i; if (index == 0 || index == 1) return index; for (i = 0; i < index - 1; i++) { temp = lastNo; lastNo = currentNo; currentNo = temp + currentNo; } return currentNo; }

## Find nth fibonacci number

For your convenience I have created one function/method to** generate Fibonacci number** series. You can call this function/method and pass position or index of **Fibonacci number** you want to get.

Let’s delve into above method/function. If you pass 0 or 1 as index to above method/function then it will return the same value. If you pass greater than 2 then it will execute the for loop block to calculate the fibonacci number of that place. Inside** for loop**, we are calculating sum of last two numbers and swapping that value. But for me interesting point is loop condition, it’s “**i < index -1**”. So if you pass 4 as index (i.e. 0 to 4, 5 times loop) it will loop for 3 times, why?

Iteration 1: 0+1; = 1 Iteration 2: 1+1; = 2 Iteration 3: 1+2; = 3 //we got our desired value.

Because we are dealing with 2 values of **fibonacci series number** in one iteration of **for loop** like I showed you in above block. So we have to loop only “**i <= index – 2**” or “**i < index – 1**”.

## Nth Fibonacci numbers in C

#include "stdio.h" #include "conio.h" int GenerateFibbonacciSeries(int index); int main() { int index = 0; clrscr(); printf("Enter any location to get fiboncci no. : "); scanf("%d", &index); printf("\n\nFibonacci number is : "); printf("%d", GenerateFibbonacciSeries(index)); getch(); return 0; } int GenerateFibbonacciSeries(int index) { int lastNo = 0, currentNo = 1, temp = 0; int i = 0; //If index is 0 or 1 then return same value. if (index == 0 || index == 1) return index; for (i = 0; i < index - 1; i++) { temp = lastNo; lastNo = currentNo; currentNo = temp + currentNo; } return currentNo; }

**Note: **I think you can easily modify this code for C++. If you find any difficulty then please let me know, I will provide C++ code.

## Nth Fibonacci numbers in C#

using System; namespace BasicPrograms { class Fibbonacci { static void Main(string[] args) { int index = 0; Console.Write("Enter any location to get fibonacci no. : "); index = Convert.ToInt32(Console.ReadLine()); Console.Write("Fibonacci number is : "); Console.Write("{0}.", GenerateFibbonacciSeries(index)); Console.ReadLine(); } private static int GenerateFibbonacciSeries(int index) { int lastNo = 0, currentNo = 1, temp = 0, i; //If index is 0 or 1 then return same value. if (index == 0 || index == 1) return index; for (i = 0; i < index - 1; i++) { temp = lastNo; lastNo = currentNo; currentNo = temp + currentNo; } return currentNo; } } }

## Nth Fibonacci numbers in Java

package basic; import java.util.Scanner; public class Fibonacci { public static void main(String[] args) { int index = 0; System.out.print("Enter any location to get fibonacci no. : "); Scanner input = new Scanner(System.in); index = Integer.parseInt(input.next()); System.out.println(String.format( "%d location Fibonacci number is : %d", index, GenerateFibbonacciSeries(index))); } private static int GenerateFibbonacciSeries(int index) { int lastNo = 0, currentNo = 1, temp = 0, i; // If index is 0 or 1 then return same value. if (index == 0 || index == 1) return index; for (i = 0; i < index - 1; i++) { temp = lastNo; lastNo = currentNo; currentNo = temp + currentNo; } return currentNo; } }

## First N Fibonacci numbers

Let’s have one more example where we will generate first n **Fibonacci numbers**. For example, first 10 or 5 fibonacci numbers. For this purpose we will reuse the above **GenerateFibbonacciSeries** method or function in our program. IF you compare this program with first one then you will find only one difference in this program. In “Main()” method we have one for loop which loops depending on value entered by user. In loop body we are passing value of i to **GenerateFibbonacciSeries** method or function and showing the value returned by method or function. Logically it will pass values from 0 to index and will show the output.

## Fibonacci series in C

#include "stdio.h" #include "conio.h" int GenerateFibbonacciSeries(int index); int main() { int index = 0, i; clrscr(); printf("How many fibonacci numbers? : "); scanf("%d", &index); printf("\n\nFibonacci number are : "); for (i = 0; i < index; i++) { printf("%d, ", GenerateFibbonacciSeries(i)); } getch(); return 0; } int GenerateFibbonacciSeries(int index) { int lastNo = 0, currentNo = 1, temp = 0, i; //If index is 0 or 1 then return same value. if (index == 0 || index == 1) return index; for (i = 0; i < index - 1; i++) { temp = lastNo; lastNo = currentNo; currentNo = temp + currentNo; } return currentNo; }

## Fibonacci series in C#

using System; namespace BasicPrograms { class FibbonacciN { static void Main(string[] args) { int index = 0; Console.Write("How many fibonacci numbers? : "); index = Convert.ToInt32(Console.ReadLine()); Console.Write("Fibonacci numbers are : "); for (int i = 0; i < index; i++) { Console.Write("{0}, ", GenerateFibbonacciSeries(i)); } Console.ReadLine(); // holds output sceen till you hit Return/Enter key. } private static int GenerateFibbonacciSeries(int index) { int lastNo = 0, currentNo = 1, temp = 0, i; //If index is 0 or 1 then return same value. if (index == 0 || index == 1) return index; for (i = 0; i < index - 1; i++) { temp = lastNo; lastNo = currentNo; currentNo = temp + currentNo; } return currentNo; } } }

## Fibonacci series in Java

package basic; import java.util.Scanner; public class FibonacciN { public static void main(String[] args) { int index = 0, i; System.out.print("How many fibonacci numbers? : "); Scanner input = new Scanner(System.in); index = Integer.parseInt(input.next()); System.out.println("Fibonacci numbers are : "); for (i = 0; i < index; i++) { System.out .print(String.format("%d, ", GenerateFibbonacciSeries(i))); } } private static int GenerateFibbonacciSeries(int index) { int lastNo = 0, currentNo = 1, temp = 0, i; // If index is 0 or 1 then return same value. if (index == 0 || index == 1) return index; for (i = 0; i < index - 1; i++) { temp = lastNo; lastNo = currentNo; currentNo = temp + currentNo; } return currentNo; } }

## Fibonacci series using recursion

In this section we will generate **Fibonacci number using recursion**;** if you are new to recursion then you can learn more about it here**. To incorporate recursion logic we need to modify **GenerateFibbonacciSeries** method or function. But don’t worry it’s going to be very minor changes.

## Recursive Fibonacci in C

#include "stdio.h" #include "conio.h" int GenerateFibbonacciSeries(int index); int main() { int index = 0; clrscr(); printf("Enter any location to get fiboncci no. : "); scanf("%d", &index); printf("\n\nFibonacci numbers at given position is : %d.", GenerateFibbonacciSeries(index)); getch(); return 0; } int GenerateFibbonacciSeries(int index) { if (index == 0 || index == 1) return index; return GenerateFibbonacciSeries(index - 1) + GenerateFibbonacciSeries( index - 2); }

## Recursive Fibonacci in C#

using System; namespace BasicPrograms { class RecursiveFibbonacci { static void Main(string[] args) { int count = 0; Console.Write("Enter any location to get fibonacci no. : "); count = Convert.ToInt32(Console.ReadLine()); Console.Write("Fibonacci numbers at given position is : {0}.",GenerateFibbonacciSeries(count)); Console.ReadLine(); } private static int GenerateFibbonacciSeries(int index) { if (index == 0 || index == 1) return index; return GenerateFibbonacciSeries(index - 1) + GenerateFibbonacciSeries(index - 2); } } }

## Recursive Fibonacci in Java

package basic; import java.util.Scanner; public class RecursiveFibonacci { public static void main(String[] args) { int count = 0; System.out.print("Enter any location to get fiboncci no. : "); Scanner input = new Scanner(System.in); count = Integer.parseInt(input.next()); System.out.print(String.format( "Fibonacci numbers at given position is : %d.", GenerateFibbonacciSeries(count))); } private static int GenerateFibbonacciSeries(int index) { // If index is 0 or 1 then return same value. if (index == 0 || index == 1) return index; return GenerateFibbonacciSeries(index - 1) + GenerateFibbonacciSeries(index - 2); } }

You can modify above code to generate Fibonacci number up to N numbers using recursion. I hope this tutorial helped to learn the concept of Fibonacci number series. Thank you, keep visiting.

## Fibonacci number logic

## Did this tutorial help you understand Fibonacci number concept?

See results without voting## More by this Author

- 16
Every C complier provides a library of around 200 or more predefined functions and macros which we can use in our C program. These library functions or inbuilt functions help programmers to perform common programming...

- 162
In my previous c programming tutorial I tried to explain what the function, its advantages is and how to declare a C function. And I told you that there are five types of functions and they are: Functions with no...

- 34
C allows array of two or more dimensions. More dimensions in an array means more data can be held.

## Comments

No comments yet.