ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Fractal Geometry

Updated on May 17, 2011

Fractal geometry is a field of mathematics whose actual boundaries are not yet entirely clear. Historically, its origins date back to early twentieth century and during the development of Measure Theory to the study of geometric sets seemingly paradoxical properties.

In these assemblies (Koch and Peano curves, Cantor set, Sierpinski triangle, etc..) Seemed to be a discrepancy between actual size and spatial configuration as a set of points (or area curves with infinite length between two points , etc.).
The term fractal was coined by B. B. Mandelbrot in 1977 (in his book The Fractal Geometry of Nature) to designate certain geometric objects irregular structure.Although Mandelbrot did not give a precise definition, fractals characterized by the following three properties:
a) Figures that repeat themselves infinitely often at different scales (self-similar sets.)
b) Figures with non-integer dimension (fractal dimension).
c) sets appearing after infinite iterative processes.

In his book, Mandelbrot defended the idea that eventually became the reason for the exponential growth of applications of fractals and the current popularization of the term: the forms of nature are fractals and multiple processes are governed by the same fractal behavior. Consider, for example at a border between states. Over time, this border is subject to change due to fighting, local agreements, small connections. That make it go the route of changing. The profile of a coast undergoes a process analogous to the border: the elements in contact, water and land, are subjected to long periods of interaction (wind and sea erosion, continental tilt, etc.) That permanently alter the shape of the coast . We study the fractal nature of various branches and trees, the drainage network of a river basin, the branching of the bronchi in the pulmonary alveoli ... Also are being used to transmit digital images fractals, or the stock market, where the fractal dimension provides the predictability of the phenomenon.

Obviously, fractals do not exist in reality and there are no lines or areas, but they serve to model real objects difficult to cover with the objects of Euclidean geometry.

The main difference between fractal geometry and classical geometry is that the latter has different contours, while the broken contours appear fractal geometry (undifferentiated), difficult to measure. For example, if it comes to measuring the contours of a country, the result depends on the resolution of the map, so a higher resolution means more length. It is for this reason that it will be measured using another type of fractal dimensions (fractal dimension), so you can compare the length of the coastline of a country to another.

In the early twentieth century appeared paradoxical sets with astonishing properties. These are the first examples of what we now call fractal

Koch curve

In 1904 Helge von Koch curve constructed that bears his name and has theproperty of having infinite length and it is not derivable in any of its points.

In its construction, is part of the unit segment [0.1] and is divided into three parts, replacing the central part of the two segments together with that party, would forman equilateral triangle. This gives a long traverse P1 4 / 3.

With each of the four segments repeats the operation described above, obtaining atraverse length P2 16 / 9. Proceed indefinitely in this way getting on a traversestage n Pn-length (4 / 3) n. The Koch curve is defined as the boundary curve to thesequence Pn converges when n tends to infinity.

Note that the length of the curve is infinite, then (4 / 3) n tends to infinity with n.Moreover, the length of the curve between two points on it is infinite.

The triangle and the Sierpinski tetrahedron

Around 1915, Waclaw Sierpinski constructed a set whose perimeter is infinite andzero area. Its construction is as follows. Starting with a triangle, draw a new trianglejoining the centers of their sides and removed from the initial figure. The result will be three triangles similar to the initial area (each) four times lower than the initial area. The operation is repeated with the three triangles and, in general, with thetriangles that will be formed. The result is the Sierpinski triangle.

If the initial triangle has area 1, the first step will figure area 3 / 4, the second will be9 / 16, and in general, the figure will nth area (3 / 4) n. The Sierpinski triangle haszero area, then (3 / 4) n tends to zero as n tends to infinity. However, if the perimeterof the initial triangle is p, the first step is 3p / 2, the second 9p / 4, and in general thenth figure will have perimeter (3 / 2) np, so the perimeter of the Sierpinski triangle isinfinite, since (3 / 2) np tends to infinity with n.

The Sierpinski tetrahedron is constructed similarly. In a regular tetrahedron markthe midpoints of edges and tetrahedra are formed by joining them aside half.Removes the central figure. In each of the four remaining tetrahedra we repeat theprocess on.

The curves of Peano and Hilbert

In 1890, Peano constructed a continuous curve passing through all points of theunit square [0,1] x [0.1]. It was the first example of a curve that "fills" space. Yearslater, Hilbert built the same type with a simple geometric construction described.

Hilbert curve is constructed as follows. Divide the unit square into four equal squares and join the centers of these squares by segment. Each of these squaresis divided again into four squares and connecting their centers always beginning with the lower left square and ending at the bottom right square. Continue in this way indefinitely joining the centers of the squares that are at each stage.

The limit of such polygonal curve "full" square drive and is called the Hilbert curve.

Below some examples of fractal geometry


    0 of 8192 characters used
    Post Comment

    • kafsoa profile image


      7 years ago

      I always watch the beauty in nature and didn't know it's fractal geometry. Nice hub, rated up and awesome.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)