ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

History of Ultrasound Physics and the Properties of Transducers

Updated on July 5, 2017

Introduction

Ultrasound physics refer to mechanical vibrations that go above 20 kHz. Sound travels in form of a motorized longitude wave whereby; the back and forth particle motion moves parallel to the wave travel direction. The human ear can hear any sound between 20 kHz and 20 Hz and as such scientists find it helpful in their daily endeavors. A transducer on the other hand is a device which converts a signal to another form of energy from one form of energy to another. Modern ultra sound physics is a product of many fronts of its evolution from its inception. The development of ultrasound physics has had immense benefits to humanity.

Discussion

Ultrasound physics was developed more than 100 years ago through the contributions of several different individuals from different nationalities. Even though the initial ultrasound development were made by scientists from outside the medical field, these developments united to enable the medical professionals realized how to use ultrasound to detect, treat or diagnose different kinds of illness (Bruno, 2012).

Pythagoras, a Greek nationalist and scientist popular for the theory of right-angled triangles, was the pioneer of ultrasound physics. This is attributed to the fact that he invented the instrument used in learning musical sounds. Another scholar, Boethius (c. 480-c.525) gave a comparison between waves produced when a pebble drops in water and sound waves. In 1794, Lazaro Spallanzani, an Italian physiologist made another discovery when he noticed that bats fly using ultrasound in form of echolocation. In this regards, the bats make sound, receives the echo when the sound hits and bounces back from an object in front, then uses the echo to define the location and size of the object. In 1826, Daniel Jean proved that sound can travel faster in water by using a submerged bell. Pierre Curie in 1880 discovered that particular crystals developed charges on the surface when mechanical stress was applied on them, which he called the piezoelectric effect (Tsung, 2011).

In the year 1912 when the titanic sank, a hydrophone was discovered. This was the first transducer that was developed by Paul Langevin, a French nationalist and which was used to discover icebergs that were used in detecting submarine enemies in the World War 1. Later in 1948, an internist by the name Ludwig George used ultrasound physics to explain how he detected and diagnosed foreign objects such as gallstones in the human body. This trend continued as more and more scientists discovered that ultrasound can be used for detecting and diagnosing then treating several human illnesses. As technologies continued to be developed and discovered by scientists based on their necessity, the basis of modern ultrasound was being formed slowly. A significant part of the ultrasound development which is in use in the contemporary society is the transducer. A transducer contains a sensor and an associated circuit which converts physical signals to proportionate electrical signals ((Agarwal and Lung, 2011). The subsequent part highlights the properties of transducers.

Properties of Transducers

A transducer has two major parts namely the transduction and sensing parts. The later refers to the part that senses and responds to the physical part of the transducer while the former refers to the part that converts non-electronic to electrical signal. The transduction element receives the output of the sensing element before converting it to electrical signal. In a few cases, the transduction element performs both the actions of the transduction and the sensing parts. For instance, a thermocouple is a device used in generating voltage (Agarwal and Lung, 2011). Now a thermocouple generates voltage consistent to the heat produced at the junction of two divergent elements particularly metals. The selection of a transducer to use is a very significant factor to consider since the right transducer will give the right results and vice versa (Winer, 2013).

A transducer is selected depending on such factors as order of accuracy to be obtained, physical quantity that has to be measured or the best the principle for any given physical input. Additionally transducers can be classified based on the method used for conversion of non-electric to electric signals, the application of the transducer, whether the transducer is passive or active, the electrical parameters which may be changed due to the entire process, and the output of electrical signal that is produced by a single transducer.

The kind of transducer to be used depends largely on the on the depth of the element to me imaged. In this light, high frequency transducers will produce more clear images than low frequency but will not go deep enough where as low frequency transducers will give less clear images but penetrate more deep. Contemporary transducers are made either made of multi-element rays or piezoelectric rays

Conclusion

To the larger extent, the discovery, development and use of ultrasound and transducer as evident in the above discussion has in several ways impacted the lives of human and animals alike. The value of ultrasound physics can be seen by humanity in its unrelenting refinement which includes the continued transformation and use of the transducer. The transducer technology has grown to be more refined such that ultrasound can easily be used with portable equipment in remote areas at the point of care.

Comments

    0 of 8192 characters used
    Post Comment

    No comments yet.

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)