ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Outer space - Human discoveries

Updated on December 22, 2017
profile image

Engineering diploma in Electrical Engineering . Worked as Electrical engineer in Saudi Arabia .

Pluto and its moon

Source
Source

Ice planet

An ice planet is a theoretical type of exoplanet with an icy surface of volatiles such as water, ammonia, and methane. Ice planets consist of a global cryosphere. They are bigger versions of the small icy worlds of the Solar System, which includes the moons Europa, Enceladus, and Triton, the dwarf planets Pluto and Eris, and many other small Solar System bodies such as comets.

Ice planets usually appear nearly white with geometric albedos of more than 0.9.[dubiousdiscuss] An ice planet's surface can be composed of water, methane, ammonia, carbon dioxide (known as "dry ice"), carbon monoxide, and other volatiles, depending on its surface temperature. Ice planets would have surface temperatures below 260 K (−13°C) if composed primarily of water, below 180 K (−93°C) if primarily composed of CO2 and ammonia, and below 80 K (−193°C) if composed primarily of methane.

On the surface, ice planets are hostile to life forms like those living on Earth because they are extremely cold. Many ice worlds likely have subsurface oceans, warmed by internal heat or tidal forces from another nearby body. Liquid subsurface water would provide habitable conditions for life, including fish, plankton, and microorganisms. Subsurface plants as we know it could not exist because there is no sunlight to use for photosynthesis. Microorganisms can produce nutrients using specific chemicals (chemosynthesis) that may provide food and energy for other organisms. Some planets, if conditions are right, may have significant atmospheres and surface liquids like Saturn's moon Titan, which could be habitable for exotic forms of life.

Icy worlds in the outer solar system could harbour life because of tidal heating from an orbital dance.

It is impossible for water to exist on the surface of the icy worlds beyond the orbit of Neptune, known as Trans-Neptunian Objects (TNOs). On the surface of these worlds, that include the Pluto-Charon and Eris-Dysnomia systems, the surface temperatures are well below 200 degrees Celsius. These objects have densities similar to moons known to have subsurface oceans in the solar system. There is strong evidence for subsurface oceans on Ganymede, Callisto and Europa in orbit around Jupiter, and Enceladus in orbit around Saturn. Triton, a moon of Neptune is also believed to have a subsurface ocean. These moons are prime candidates for the search for extraterrestrial life within the solar system.

While it is highly unlikely that liquid water exists on the surface of the TNOs, research suggests that the subsurface oceans on these remote worlds in the outer reaches of the solar system could still maintain liquid water in their interiors. Any subsurface oceans are believed to exist for a brief period because of the radiation from the interiors of the object, from the time they were formed. Eventually, the radioactive elements become stable, and the oceans freeze. New research suggests that there might be a previously unknown source of heat that could significantly extend the lifespan of subsurface oceans on remote icy worlds.

The increased life span can be because of the heat generated from the gravitational pull. The worlds try to enter into a stable orbit with the parent object, but this is not always possible. The remote worlds are bombarded by collisions with other objects, and each time this occurs, their orbits are disturbed slightly. The moons then try to realign their orbits with the parent object, such as Charon with Pluto, and the attraction due to gravity repeatedly squeezes the moons. This process could potentially generate enough friction to heat up the interiors enough to maintain a subsurface liquid water ocean.

Wade Henning of NASA, and co-author of the study says, "We found that tidal heating can be a tipping point that may have preserved oceans of liquid water beneath the surface of large TNOs like Pluto and Eris to the present day."

The process is known as tidal heating, and the finding could extend the number of possible candidate worlds within the solar system that can harbour life. Spectral analysis of the remote icy worlds reveal the presence of crystalline water ice and ammonia hydrates. These are not expected to survive for long on the surface of these worlds because in extremely cold temperatures, ice is more amorphous than crystalline, and the space radiation breaks down ammonia hydrates. The analysis of the light from these worlds indicate that these materials originate from within the bodies themselves, indicating a subsurface ocean. The researchers hope develop better models to predict the duration for which tidal heating can be expected to maintain subsurface oceans on these icy worlds.

© 2017 gopanmg

Comments

    0 of 8192 characters used
    Post Comment

    No comments yet.

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)