ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

How the Human Brain Works - A Simple Summary of Brain Segments

Updated on December 29, 2012

Flashing back through the different periods of human civilization, it is apparent how humans have progressed from their hunter-gatherer ways to today’s modern lifestyle. More notable is how we have consistently assumed a paramount status in the environment; compared to other species, we demonstrate considerable resourcefulness and expertise as we harvest food, resources and inspiration from nature undeterred to suffice our everyday demands. This very competitive behavior can be attributed to the deliberate design of our human brain – particularly the frontal lobes, which function as the brain’s “executive center” and contain the prefrontal cortex.

Space exploration is one activity whose success formula requires meticulous blueprints and precise calculations. Practically everything, to varying extents – whether designing financial budgets, or simply picking shoes to match our outfit – requires forethought and planning.

In the frontal lobe and the orbitofrontal and ventromedial region of the prefrontal cortices, rationalization occurs. It combines reasoning and decision-making processes to create systematic approaches instrumental to successful goal accomplishment.

These same regions, researchers believe, house the roots of empathy, compassion, disgrace and guilt. The limbic system, consisting of parts from the cerebral cortex and subcortex, is primarily responsible for emotions. Emotions develop from their matching neural patterns; coupled with rationalization, humans learn to navigate complex situations. These situations possess classical and operant conditioning effects, punishing or rewarding our actions, shaping our individual and social behaviors or behaviors-to-be.

The 1986 space shuttle Challenger tragedy illustrates this – until disaster struck on its 10th mission, the initial frictionless missions reinforced NASA’s catastrophic use of the mal-designed O-ring equipment. Since then however, recalling this disaster would stimulate the central nuclei of the amygdala deep inside the medial temporal lobes, inducing fear of future accidents. This type of learning engages the orbitofrontal cortex and insula.

Execution is the next important step to give life and tangibility to our plans, as musicians translate a composer’s imagination into music. Using this analogy, the premotor cortex activates readiness potential when the musician positions his fingers in preparation for performance, utilizing his supplementary motor cortex he breezes through strings of running notes and rhythmic passages, and the prefrontal cortex is responsible for these movement sequencings.

After execution, it is important to determine how far and long our desired results can be sustained. Incorporating elements of review, evaluation and monitoring, this peculiar ability to manipulate our outcomes to adapt them to suit our changing needs, improvise or compensate our shortcomings(or mistakes) is vital to our competitiveness. Using similar mechanisms to the planning stage this activity largely localizes in the prefrontal cortex. This is the process NASA underwent after the setback before bouncing back with Endeavor shuttle to replace the Challenger .

Indeed, learning and memory are closely intertwined. This continuous accumulation of knowledge and experiences influences the quality of our decisions. Long-term memories are typically emotionally-charged and lucid events like life or societal milestones, molding our identity and aspirations. An example of working memory at work is when a postman retains an address in between the short time he sees it and drops the letter into its mailbox. A cross between the two are intermediates, like finding the airconditioning control or recalling how much battery is left before your handphone needs charging. Structures like the anterior prefrontal cortex is involved in memory monitoring while the parietal lobes and lateral prefrontal cortex support working memory. Some researchers hypothesize that the dorsolateral areas of the prefrontal cortex is responsible for spatial working memory and the ventrolateral areas for the non-spatial. Undisputed is the importance of receiving, retaining, retrieving and revising information upon demand – abilities which when absent severely impede learning, confining our existence to the ‘present moment.’

Procedural learning is implicit, like when left-handers learn right-handed guitar. When Singaporeans drive in America; new habits form when the basal ganglia connects new stimulus (road signs) with our action of driving on the opposite side of the road. Hippocampal learning instead is declarative and explicit. Declarative memories are stored in the hippocampus, a subcortical structure that embeds these memories into long-term storage through a process of internal replay that occurs at later intervals. Sometimes, as students solving algebraic problems stumble upon ‘magic solutions’, learning catches us unaware. This ability to adapt and improvise upon our appraisal of immediate matters demonstrates our dynamicism in our environment.


Difficulties with working memory or focusing on tasks or sensations often stem from impairment in attention. In the frontal lobes, attention is a complex dance between concentrating, dividing, switching… localized in the right frontal, cingulate, orbitofrontal and dorsolateral cortices. Often underestimated, attention willfully draws fundamental objects, feelings or sensations into consciousness, preventing sensory neglect which results in disorganized perception and behaviors.

Our exceptional communicative abilities involve the possession of a unilateral cortical area handling linguistic functions(including broca’s and wernicke’s area in the frontal and temporal lobes respectively). Lateralized in the left hemisphere, such intricacy and vibrancy of overt language ability is not approached by other animals. Language is ‘productive’, presenting possibilities of using symbols to express creativity, facilitating the transmission, sharing of sophisticated concepts and ideas. The Safir-Whorf thesis proposes howlanguage colors our perception of the world, perhaps opening our eyes to complexities unseen by animals.

Evolutionary psychologists propose the Massive Modularity Hypothesis of the brain – essentially theorizing that the different segments of the brain have specific and specialized functions. Culmination of the millions of individual operations occurring simultaneously within the brain produces an overall response or set of instructions from the brain to the body.

Structurally, dendrites in the cerebral cortex have up to 16 times over dendritic spines as neurons in other cortical areas, explaining the high activity levels occurring here. The prefrontal cortex occupies a third of a primate’s entire cerebral cortex, and the human brain-to-body ratio is 0.02 – both values significantly larger than most species, explaining why our superior intelligence overrides animal instincts. In fact, the prefrontal cortex size is bigger today compared to our ancestors, suggesting that our enhanced competitiveness is not only unrivaled by other species but has historically reached unprecedented levels.


    0 of 8192 characters used
    Post Comment

    No comments yet.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)