ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

What is an integral?

Updated on April 18, 2013

An integral is the total area under the curve of a function. It is represented by a curve ∫ with an upper and lower limit. These limits determine the x-values at which you are actually taking the area under the curve. Integrals are also considered as “anti-derivates” which mean that you are changing your unit in the reverse direction as you would as if you took the derivative. For example the derivative of the distance traveled by a car is the velocity of the car; this means that the integral of the velocity of the car will give us the total distance travelled by the car. Now that we have a working definition of what an integral is let’s answer some specific questions that people may have when they first start working with integrals.

How does an integral find the area of a function?

When we try to find the area under a curve we would basically take a geometric approach by making a bunch of rectangles, or trapezoids and then adding all of the rectangles area together to get one total. One should note that when creating these rectangles there is error between the edges of our rectangles and the curve of our function that would make us over or underestimate. When creating these rectangles one should also notice that the thinner we make these rectangles the more accurate our results will be. We call this integral approximation and you can see a very thorough visual representation here. An integral has the same method but it creates its rectangles infinitely thin to calculate a very accurate result.

What about the integral of the area under the x-axis?

When taking the integral of the function we are finding the area between it and the x-axis. This means that when we are above the x-axis we are finding the area under the curve; and when we are under the x-axis we are finding the area above the curve. When we are comparing these results we find the area under the curve is positive (+) and the area under is negative (-); this means that when we add these areas together to get our total area. This would be better represented as all of the area above the x-axis minus the area below the x-axis.

Can we find the area between two functions?

Yes, to do this we would take the integral of the upper function and subtract the integral of the bottom function. This means that we would have the area that f1 overlaps – f2 overlaps giving us the area between or below f1 and above f2. You can see a visual modelhere.

Do our integrals always have to be bound?

Yes, if the area does not have a specific boundary or intersection that we can stop calculating the area our function would expand all the way toward infinity. This would mean that since we are covering an infinite amount of x the height of the function would not matter because an infinite base would mean an infinite amount of area.

Now that we have some basic guidelines to follow when thinking about taking the integral of a function we can apply them when looking at specific integral laws. One specific law is the opposite of the power rule: dy/dx(x^n) = n*x^(n-1)*dx. This makes our opposite rule ∫(x^n*dx) = (x^(n+1))/(n+1).Now is not the time to memorize every law but just remember that an integral is an anti-derivative so just work the derivative laws backwards and you will only have a few new laws along with what you already know.


    0 of 8192 characters used
    Post Comment

    No comments yet.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)