ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

What was Special about Einstein's Brain?

Updated on September 20, 2016

Was Einstein's Brain Unusual?

Weight? Normal. Shape? Normal. Taste? Delicious!

Okay, I made up that last one. But it's true: Einstein's brain has been studied and found to be, well, unremarkable. One might imagine getting inside that haloed head and finding a munificent instrument - a cathedral of gyri and sulci, eternal verities of the universe made flesh. Alas, postmortem examination of Einstein's brain found it to be largely indistinguishable from the pork chop the rest of us have rattling around between our ears.

...with one exception.

Mysterious Area 39

Here's the skinny from Marian Diamond, a neuroanatomist -- one of many -- who studied the great man's brain. She and her coworkers published their findings in the journal Experimental Neurology back in 1985 (vol. 88, pp. 198-204). If you permit us to paraphrase a bit, they found that Einstein's brain exhibited:

...excess glial cells in Brodmann area 39.

Huh. Well how about that.

Call us cynical, but we can't help but think Dr. Brainy McBrain is going to come up with something given the opportunity to poke around Albert's noggin, lest the Einstein estate get testy about ponying up the thing in the first place. Because we here at LabKitty know a thing or two about a thing or two, and we find this finding to be, well, unremarkable.

For the moment, however, let's take Diamond's statement at face value. What does it mean? What's a glial cell? What does an excess of them portend? And what the heck is a Brodmann area 39?

All in good time, dear reader. All in good time.

First, a little history.

fair Princeton, where we lay our scene
fair Princeton, where we lay our scene

A Little History

It may surprise you to learn that Einstein's brain is not floating in a vat at some Institute of Important Brains where scientists can sign up for time on it like the Hubble space telescope. Indeed, Einstein's brain is not floating in a vat at all.

Our story beings in 1955. Einstein dies in Princeton University Hospital. An autopsy is scheduled. Enter 43-year-old staff pathologist Thomas Harvey. He finds that Einstein died of a ruptured abdominal aorta, consistent with the nausea and other symptoms Albert had presented. Dr. Harvey weighs the internal organs, checks around for whatever a pathologist checks around for during an autopsy. Then he opens the skull.

Here's where things get weird.

Harvey absconded with Einstein's brain. Not in an overpower-the-guards kind of way; more in a dog-ate-my-homework kind of way. Just taking this home 4 2night. BRB, he would have texted. Except one night turned into, well, indefinitely. When Einstein's relatives, associates, and an army of interested parties (including -- literally -- the U.S. Army) began pressing him for the return of the brain, Harvey did not relent. He insisted he was overseeing a study of the material and would publish his findings in due time.

A swirl of urban legends soon surrounded the event, some of which having a thin veneer of truth. Harvey hired a local artist to paint a portrait of the brain (true). Someone removed Einstein's eyes (alas, true) which were later sold to Michael Jackson (not true). The Israelis put out a hit on Harvey (not true) and sent armed agents to seize Einstein's papers from Princeton (true). Harvey is a patsy, and Einstein's brain is really in a Moscow basement where the KGB is using it to build an army of genius robots (we're going to go with probably not true on this one).

Depending on whose story you believe, Harvey was either a dedicated pathologist and loyal trustee of the Einstein family or an opportunist mad scientist one step away from having a hunchback assistant. What we know for sure is that Harvey soon left Princeton, taking the brain with him. This marked the beginning of a long downward spiral in his professional trajectory, eventually finding the former Yale graduate working the third shift in a Kansas plastics factory. It was as if possession of the brain consumed him, like Kate Bush's red shoes or a Stephen King Estes Park hotel or an analogy involving Hobbits.

For better or for worse, Harvey seems to have earnestly considered it his life's mission to identify the root of Einstein's genius. He cut the brain into more than 200 pieces, and over the next 40 years doled these out to scientists around the world to study. Most of these efforts came to naught, either because the recipient found nothing special to report or had no idea who Harvey was and whose brain is this really?

However, one sample reached noted Berkeley neuroanatomist Marian Diamond. She analyzed a portion of Einstein's cerebral cortex - the outer layer of the brain that is associated with abstract thinking (as might be involved in, say, doing physics). As we noted above, Diamond and her coworkers observed something peculiar, something unusual: an excess of glia in a region of Einstein's cortex known as Brodmann area 39.

This finding is often what you hear when people cast about for some explanation of Einstein's genius. Here it is: the Holy Grail, the Ghost in the Machine. Long live the new flesh. Can us ordinary folk get us a strappin' area 39? Is there a pill that increases glia? Can we put away the Mozart tapes and skip the fancy book lernin'?

Well, let's not mothball the Speak-n-Spell and the public school system just yet.

Learn more on Amazon

Want to learn more about the odd intersection of Albert Einstein and Thomas Harvey? Journalist Carolyn Abraham fills in the details. The personalities. The media hoopla. The strange FedEx packages. And just when you think the story can't get any weirder, it keeps getting weirder. Einstein's granddaughter who might actually be his daughter. The entrepreneur looking to sell Einstein's brain like commemorative dinner plates. Family associates working to protect Einstein's image at any cost. And through it all, Harvey's steadfast determination to make good on an opportunity that fell on him one morning in 1955.

A Look Ahead

Not to spoil the punchline, but the response of the neuroscience community to Diamond's announcement can charitably be described as a giant meh. Nobody slapped their forehead upon hearing the news and exclaimed Zut alors! Glia in area 39! It all makes sense now! We're telling you this up front because we would feel bad if you read the rest of our tale expecting a grand denouement below and instead discovered it turned out to be something of a shaggy dog story.

Still, knowledge is never wasted, even knowledge of a shaggy dog story. Besides, the next time you overhear some stranger marveling over Einstein's glial cells, you will be prepared to roll your eyes and dismissively inform them that -- point of fact -- the response of the neuroscience community to Diamond's announcement could charitably be described as a giant meh. You're on your way to making a new friend!

To explain all this, though, we need to look at how anatomists explore the cellular structure of the brain, a field of study known as histology. One might imagine analysis of Einstein's brain was performed using cutting-edge technology. Ginormous state-of-the art equipment. Expensive machines that go ping. Sharks with frickin' laser beams mounted on their heads. Dogs and cats living together. Mass hysteria.

Not so. The techniques Professor Diamond used were invented over a century ago. You can do them in your kitchen.

Welcome to the wild world of histology.

the wild world of histology
the wild world of histology

The Wild World of Histology (part I)

Serious study of the brain began only in the middle of the 19th century. Sure, the Greek physician Galen worked out that the brain was important for figgerin' back in antiquity, mostly by observing gladiators who got maimed in the noggin. But Galen didn't offer much in the way of illuminating detail, just like a real theory of physics would have to wait for Newton's calculus to supplant Aristotle's cocktail party talk about "things naturally seeking the center of the universe."

What changed? The 19th century saw application of the microscope to neuroanatomy for the first time. Although Leeuwenhoek's instrument had been around since the late 1600s, it took some time for the device to be useful in the study of the brain. The first problem was that you must slice the tissue thin enough that light will pass through it. A fat chunk of brain under a microscope tells you nothing; you may as well be looking a Pop Tart (which, oddly enough, we have. A chunk of Pop Tart under a microscope indeed tells you nothing).

The slicing problem was solved by the invention of the microtome, a miniature version of the machine they use down at the deli to chip your beef and wafer your prosciutto. A hunk of brain is glued to a chuck which can be advanced in a precise fashion - usually by twisting a screw - and a knife or razor blade is then guided through the tissue to carve off a thin slice. Slice-advance-repeat until your brain chunk is sliced up like miniature bologna.

An expert can thin-section fresh brain, however the tissue is usually pickled first (the technical term is "fixed") to make it easier to cut, most commonly using formaldehyde or one of its chemical cousins. After that, stick your slices to a glass slide, scrounge up a microscope, and you're ready to make history, no?

Alas, there is another problem.

Learn More on Amazon

Freelance writer Michael Paterniti takes a 1997 cross-country road trip with Harvey riding shotgun and Einstein's brain in the trunk. No, we're not making this up.

The Wild World of Histology (part II)

A thin slice of brain tissue is transparent: stick one under a microscope and you will see nothing except perhaps a yellowish tinge. This brings us to the second problem in the microscopic study of brain: you must stain brain cells to see them. (Footnote: today there are gizillion-dollar microscopes that use special optics to look at unstained tissue. However, such wonders were nowhere to be found in laboratories of the 19th century.)

These days, histologists have an arsenal of dyes and stains at their disposal, like artists working in different media. There are stains that label parts of neurons, like a particular protein stuck to its surface, and stains that completely fill individual neurons plucked from the thousands of cells in the tissue apparently at random. There are stains that stain the axons that make up a nerve and stains that color the myelin insulation that surrounds them. There are dyes you can inject in one area of the brain that will be slurped up and and stain all the neurons that project there. And there are dyes you can inject into a neuron that will stain all the neurons that neuron talks to. There are antibody labels and fluorescent viruses, genetically-engineered glowing neurons and radioactive tracers. Lions and tigers and bears.

But the histology technique important to our story is the humble Nissl stain, an easy-to-use technique developed by the physician Franz Nissl in the late 1800s. Like Lou Gehrig getting Lou Gehrig's disease, Nissl's technique stains a cell's Nissl substance, early anatomist-speak for what was later established to be ribosomes of the endoplasmic reticulum (although the technique also stains DNA in the cell nucleus. This turns out to be important, as we shall see).

If talk of DNA and endoplasmic reticulum makes you glaze over, fear not. For the details are less important than the effect: a Nissl stain transforms a slice of brain tissue from a transparent wasteland into a sea of spots.

Perhaps an example would be helpful.

Example Nissl Stain

An example Nissl-stained thin section is shown in the accompanying figure hovering at either the left or right of your screen, depending on how your browser is formatting the page.

Each purple spot is a brain cell (specifically, a brain cell from the hippocampus. And, no, this is not Einstein's hippocampus). Some of the spots are bigger and some are smaller. Some are round dots and some are triangularish splotches. These details provide information to the trained eye of the histologist. More later.

Professor Diamond used a Nissl stain to study Einstein's brain. What was she looking for? What can a Nissl stain tell you about a brain?

Enter Korbinian Brodmann.

zut alors!
zut alors!

Brodmann Areas

Early neuroanatomists begin to thrash about for some way to make sense out of the depressing complexity their accumulating histological material was showing them. Perhaps most troubling of all was the cerebral cortex, for here there seemed to be no footholds whatsoever. Many parts of the brain have characteristic features discernible even to the naked eye, but beyond its various infolding - much of which exhibits a unnerving degree of variability between individuals - the gross anatomy of the cortex does not provide any clues. Surly the cortex is not just one big slab of cells wrapped around the brainstem. There must be some principles that govern its organization. What are they?

In the early 1900s, Korbinian Brodmann and other anatomists working in Germany began to compare Nissl-stained sections from different parts of the cortex, looking for characteristic features. This they found not in the individual cells, but in how the cells were organized into layers.

Take a "core sample" of the cortex - from its surface down to the white matter underneath - and Nissl stain it. If you take a step back and squint a bit, you will notice the cells in your section are not distributed uniformly. Rather, they congregate into layers. Some of the layers are dense with cells; others are rather sparse. Additionally, a few special cortical areas contain neurons that are either huge or tiny, sometimes almost comically so.

Three examples of what we are trying to describe are shown in the accompanying figure, either at the left or right of your screen (again depending on the quirks of your browser). Note how each section has its own characteristic appearance (remember: squint). The section on the right has three layers of small cells; a wide band near the top and two narrow bands further down. The center section has a tight band of small cells in the middle of the tissue and a diffuse band of small cells at the top. The section on the right does not exhibit much cell layering at all, but rather contains large cells spread throughout (Footnote: we're cheating here a little - the section on the right is not a Nissl stain, but it still nicely demonstrates the Brodmann concept).

Brodmann and co-workers parceled out the human cortex into 47 distinct areas based on this sort of witchcraft. We won't lie: identifying Brodmann areas is often as much an art as it is science. Still, many of these areas were later confirmed to have functional significance using more sophisticated techniques. For example, Brodmann area 17 is now known to be primary visual cortex, the location in cortex where visual information first arrives. Brodmann area 4 is now known to be primary motor cortex, the region of cortex where voluntary movements originate.

As you are probably now wondering, where is Brodmann area 39? And what goes on there?

Brodmann Area 39

Wikipedia will tell you that Brodmann area 39 is located at the caudal pole of the left temporal gyrus. This tells most people not much, so here's what you do. Feel around at the base of the back of your head for a bump. Be not alarmed - everybody has one (medicos call this the external occipital protuberance aka the inion). Press on your inion using the thumb of your left head and stick your pinky in your left ear. Your index finger is now pointing (approximately) at your Brodmann area 39.

Failing that, you could just take a gander at the accompanying figure over there.

What sort of mental gronkulations transpire at this location? Just as we mentioned that Brodmann area 17 is visual cortex and Brodmann area 4 is motor cortex, Brodmann area 39 is in something called association cortex. The idea is that "primary" cortex (visual, auditory, somatosensory, whatever) gets first crack at any incoming information. When they're done, they pass their results onto association cortex, which then, well, "associates." The image of a cat goes to visual cortex; the mewing goes to auditory cortex. Only when this information is combined in association cortex do you enjoy a single mental percept of, say, grumpy cat.

At least that's the story you'll find in textbooks.

When you get your neuroscience degree, when you are ready to leave the monastery and make your way in the world, when you pass before the line of your thesis committee on the way to the hibachi of hot coals that blocks the door, each of them with forearms out-thrust displaying ancient glyphs from the Edwin Smith Surgical Papyrus soon to be branded into your flesh, there are secrets you are sworn to keep.

LabKitty will tell you one of these secrets because LabKitty is a rebel.

One of the dirty little secrets of neuroscience (and there are many) is that we have no idea what happens in association cortex. It is an enigma, as wide as a church door and as impenetrable as the icy silence of an angry girlfriend. Get a neuroscientist liquored-up at your next campus function and they may well spill the beans: ...if we don't know what it does, we call it "association cortex." Muhahaha! Then s/he will throw up on your shoes.

Be that as it may, we have arrived, finally, at Brodmann area 39 in Einstein's brain. You are almost at the end our tale, like Sam and Frondo slogging their final steps up the slope of Mt. Death, into which they will cast the necklace, all the while taking care to evade the treacherous Dollop, as LabKitty might evade copyright attorneys of the Tolkien estate.

For one final twist remains.

Glial Cells

Each dot in a Nissl stain is a brain cell. Note we write "brain cell" and not "neuron." For there is not one but two types of cells in the brain. Montagues and Capulets. Sharks and Jets. Stuffing and potatoes.

Neurons and glia.

This division was noted by the early anatomists, but its functional significance was only established a century later using techniques that could measure the electrical activity inside cells. These have confidently divided brain cells into two camps: (1) neurons, which carry out information processing, and (2) all the other cells, which don't. The latter are collectively called glial cells or just "glia."

What do glia do? The catch-all term is that they provide "support" for the neurons. Think of them as the pit crew, with neurons being the actual cars that go out and race.

Some examples.

There are glia called astrocytes that buffer potassium in the brain, maintaining the proper ionic environment for neurons to do their thing. There are glia called microglia that eat neurons when they die. There are glia called oligodendrocytes that provide electrical insulation around nerve bundles. Many glia pull double duty, for example, providing scaffolding for the developing brain and changing jobs once everything is in place.

You can tell a neuron from a glia in Nissl-stained tissue if you know what to look for (we refer the interested reader to the blackbox below for an explanation). Long story short: the little round dark spots? Glia. The big lighter splotches? Neurons.

You are now armed with everything you need to understand Professor Diamond's assessment of Einstein's brain.

Neurons and glia look different in Nissl for two reasons. First, neurons are larger than a typical glia; hence larger, yes, but also a neuron is chocked full of endoplasmic reticulum (ER). Glia? Not so much. Second, neurons do not undergo cell division. This means the DNA in a neuron is never condensed, so the nucleus is big. Glia do, so their nucleus is compact. The net result is that we obtain lighter staining of the ER + nucleus in a neuron, and darker staining of only the nucleus in glia.

An Excess of Glial cells in Brodmann Area 39

The chunk of brain tissue that Dr. Harvey sent Professor Diamond had been sitting in formaldehyde for decades so it was well-fixed. Diamond and colleagues cut the sample into thin sections using a microtome, then stained the sections using the Klüver-Barrera method, a cocktail of Nissl and myelin stains so popular with histologists that you can ask for it by name, like a Rusty Nail or a Singapore Sling. The Nissl stain colors neurons and glia in purple; the myelin stain colors bundles of axons coursing through the tissue in light blue. Once the sections were mounted on glass sides, Diamond would have glued coverslips over the tissue. And once the glue had dried, she would have headed off to the microscope with her collection of stained brain slices, presumably with a big mug of coffee in hand.

At the microscope, Professor Diamond counted neurons and glia in the various Brodmann areas of Einstein's cortex contained in the sample Dr. Harvey had provided. Upon examining Brodmann area 39, Professor Diamond discovered the ratio of glia-to-neurons there to be unusually high. How high? About 75% higher compared with brains taken from other individuals of a similar age.

Thus she reported her results: an excess of glial cells in Brodmann area 39.

No other Brodmann areas were reported as unusual, either because they weren't or Dr. Harvey did not provide them.


Scientists are killjoys by nature, if for no other reason that giving any one of us recognition makes it more likely they'll get funded and you won't. Great scientific discoveries tug at the purse strings as well as the heartstrings, especially in these dark days where the Republican's sudden fetish for fiscal responsibility has scientists turning on each other like rabid dogs. (As if the $20 billion NIH budget is the real reason for the deficit and not the trillions spent on defense and entitlement programs. But we digress.)

That being said, excess glial cells in Brodmann area 39 just doesn't get LabKitty's fur puffy. It could be a fluke. It could be related to non-physics thinking, like Albert's violin playing. Or it could be a chicken-and-egg dealio, with the true cause of genius forcing a flowering of glia cells in area 39 to catch up. And, as we have noted, area 39 is smack dab in the middle of the no man's land called association cortex. It would be swell if we knew what area 39 was for before we start making claims about what enhancing it does.

And how much sweeter the tale if Einstein were found to have a protuberance of neurons in area 39. Sterling extra-human computation units bristling with whatever the heck neurons bristle with, miniature steroid-enhanced beeftots prancing the cerebral beach and kicking sand at us intellectual mortals. From time to time, the idea gets floated that glia participate directly in information processing. But the evidence that we have accumulated to-date suggests a division of labor in the brain, in which neurons do the thinking and glia provide support. To be sure, this view is an over-simplification, but it is one that is both useful and that fits our current understanding of how the brain works.

These objections (and worse) have been registered by big-shot neuroanatomists who have scrutinized Diamond's findings, albeit usually in more sober language. In the end, we are left with an inversion of Shakespeare. O nature, what hadst thou to do on earth; When thou didst bower the spirit of an angel; In mortal paradise of such ordinary flesh? We're glad some first-rate neuroanatomists got a look at Einstein's brain, but Diamond's findings provide us more questions than answers. Alas, we suspect had the brain slices not been labeled "A.E." the results would have never seen the light of day.


And so we come to the end of our story, Einstein's brain in hundreds of pieces scattered around the globe and not much to show for it. The secret is still locked inside; the combined labors of Franz Nissl, Korbinian Brodmann, Thomas Harvey, and Marian Diamond could not coax it out. A few other studies have since appeared, such as the 1999 Lancet article by McMaster University anatomist Sandra Witelson who reported Einstein's association cortex was plumper than the average bear's, a result consistent with Diamond's cellular observations but not proving their significance. Witelson's announcement generated considerable hoopla in the lay press, earning her a spread in People magazine and a fair amount of ire in the scientific community. Down here in the salt mines, media-darling scientists are viewed more like Stanley Pons than Tony Stark.

These days Marian Diamond is retired, having made a distinguished career of studying the effects of enriched environment on cognitive development, the structural differences between the male and female brain, and connections between the brain and the immune system. The study of Einstein's brain was for her, believe it or not, something of a minor side show.

Thomas Harvey practiced medicine until 1989. But in some sense his career was derailed one April morning in 1955, when a glimpse of the eternal verities of the universe made flesh enticed him to his fateful decision. A siren song he could not resist. Whatever Harvey had hoped to discover we will never know. He returned what was left of Einstein's brain to Princeton Hospital in 1998. His autopsy photographs and notes, including a map of how the 240 pieces he made of Einstein's brain fit back together, have been acquired by the National Museum of Health and Medicine in Washington. Perhaps one day a comprehensive study of Einstein's brain will be undertaken, a wish apparently expressed by Einstein himself, although quick to demand that his office, his sailboat, his house at 112 Mercer street not become freakish museum pieces.

Harvey died in 2007.

What made Albert's mind special? We suspect a great intellect is not generated by any one thing but rather a combination of many. Genes. Upbringing. Training. Motivation. Perhaps a little luck. Genius isn't contained in a Brodmann area; you can't point to a cluster of cells and shout Eureka! As Stephen Jay Gould once wrote:

I am, somehow, less interested in the weight and convolutions of Einstein's brain than in the near certainty that people of equal talent have lived and died in cotton fields and sweatshops.

It is not the genius locked away in one brain that is important, but rather the genius locked away in all. We cannot accept that the world is anatomically divided into two camps; one of which suited for great intellectual accomplishment, the other forever outside looking in. That hard work is not as important as innate talent. Imagination may be more important than knowledge, but Albert's imagination would have taken him nowhere had he not buckled down and learned calculus.

The last word we give to Einstein himself:

It strikes me as unfair, and even in bad taste, to select a few for boundless admiration, attributing super-human powers of mind and character to them. This has been my fate, and the contrast between the popular estimate of my powers and achievements and the reality is simply grotesque.

Image Credits

Images may have been cropped, color adjusted, or otherwise altered from the original.

Chimpanzee brain from the London Science Museum by Gaetan Lee and appears under the Creative Commons Attribution 2.0 license. Watercolor of Cleveland tower (Princeton University) by Magneticcarpet and appears under terms of the GNU Free Documentation License (v. 1.2). Image of Cajal in his laboratory is in the public domain. Microscope with stained slide by Alex Degarate and appears under terms of the Creative Commons Atrribution-Share Alike 3.0 Unported license. Nissl stain of rat hippocampus from the National Institutes of Health and is the public domain because it was created by a government employee as part of his or her normal job duties. Drawings of comparative cortical architectonics by Santiago Ramón y Cajal is in the public domain. Cytoarchitectual map showing Brodmann area 39 by Wasabee and released into the pubic domain. Photograph of statue of Iustitia by John Massey Rhind and appears under the terms of the GNU Free Documentation license. Image of Einstein at the blackboard is in the public domain.


All other weirdness (c) 2012-14 LabKitty Design


    0 of 8192 characters used
    Post Comment

    • blestman lm profile image

      blestman lm 3 years ago

      Enjoyable lens. Well structured. Makes me want to go on a histological expedition of my own

    • profile image

      othellos 4 years ago

      Very interesting and clever topic. A learning experience which asks for...more! Enjoyed the lens:=)

    • OhMe profile image

      Nancy Tate Hellams 4 years ago from Pendleton, SC

      It never ceases to amaze me what I learn from reading on Squidoo. This was so interesting and now I want to know more.

    • Theweirdandmore profile image

      Theweirdandmore 4 years ago

      I am so glad I found this lens, it's so interesting.

    • hkhollands profile image

      hkhollands 4 years ago

      I am going to share this lens with my science students. They will enjoy the strange facts and the humor.

    • aesta1 profile image

      Mary Norton 4 years ago from Ontario, Canada

      Quite revelation. Am glad I found this lens.