ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel
  • »
  • Education and Science»
  • Physics

History and Forces of Flight Lesson

Updated on December 12, 2015

This is part 4 of a 5 part hands-on unit study on Floating & Flying. Learn about the history of flight from the time of the Greeks through present day. Design and redesign foam fliers, balloon jets, parachutes, drag-chutes, and more as you examine the relationship between flying, thrust, and drag! My lessons are geared toward 4th-5th grade level children and their siblings. These are lessons I created to do with a weekly homeschool co-op. We meet each week for 2 1/2 hours and have 16 children between the ages of 1-13. Use these fun lessons with your classroom, family, after school program, camp, or co-op!

The History of Flight: Flops, Failures, and Finally Flying

1. Pray. Read & discuss Isaiah 40:28-31.

2. Present "The History of Flight: Flops, Failures, and Finally Flying." My oldest 2 children sat behind a table that had been covered by a sheet and held up pictures (and occasionally added sound effects) as I talked through the history of flight. Below you will find what I said along with the links to the pictures that we showed. The sound effects/words my sons said are underlined below. If you would prefer, you could simply read a book on the history of flight instead of doing this "performance." *If you would prefer to instead read a book to introduce the history of flight, I would recommend How People Learned to Fly (Let's-Read-and-Find-Out Science 2) by Fran Hodgkins.

YOU WILL NEED: pictures (Click on the below links to see the ones that we used.)

  • Picture: First Flight Picture

    The flight of an airplane which took place on December 17, 1903 did not just suddenly happen as a random event. Since the beginning of the world people have probably been day dreaming of flying with the birds.

  • Picture: Daedalus

    Greek mythology tells of the tragic end of Icarus. In order to escape from an island, Daedalus fashioned wings, using feathers held together by wax. He warned his son (Icarus) not to fly too close to the sun for its heat would melt the wax and disaster would follow. Icarus did not obey his father and fell to his death. [Have Icarus say, "I'm flying! I'm flying!" and then yell, "Ahh" followed by "splash." The story of Daedalus and Icarus was a myth, only a story, but some men really did think they could fly.

  • Pictures: Chinese Kite Flying & Wan Hu

    The famous explorer, Marco Polo, told stories of kites made by the Chinese which were large enough to carry a man. Another attempt at flying was using rockets like what we use on the Fourth of July. A Chinese man named Wan Hu strapped 47 rockets to a chair, had 47 of his servants light them all at the same time, and, well, ["BANG!"], Wan Hu was never heard from again.

  • Picture: Flying Monk

    In Europe men tried strapping cloth and feathers to their backs. They would jump off towers, flap their wings, and fall like a rock. Most of them died. ["SPLAT"] In 1490 a man named Danti climbed a tower in Perugia, Italy. Far below many people watched as he leaped off a tower. The wind caught his wings and for a few seconds he glided. Then his left wing broke and he crashed to the ground. He was badly hurt, but he was the first European man to successfully create wings that would help a man to fly.

  • Pictures: Ornithopter, Flying Machine, & Parachute

    Danti wasn't the only Italian man with successful ideas. Leonardo da Vinci studied the way birds flew. He made flying models that rose all by themselves. They worked the same way as present day helicopters. He watched leaves fall to the ground and designed a parachute, though he was never able to build a full-scale model. When he died in 1519, he left many drawings of contraptions that would help men to fly, but his drawings were hidden for hundreds of years.

  • Picture: Archimedes

    Before we can continue, we must mention the work and writings of Archimedes, 300 B.C. ["EUREKA!"] He made many discoveries about buoyancy, and many of his concepts are the same ones that were later used to develop hot air balloons. This sets the stage for the entrance of the brothers Montgolfier.

  • Picture: Montgolfier

    In 1781 a new discovery was made. In France lived 2 brothers, Joseph & Etienne Montgolfier. They noticed how underwear rose above a fire as it was drying. If this force could be contained in a bag, would it not lift things? In June of 1783 the brothers, in full view of the public, launched a paper-lined hot air balloon. It floated up to a height of six thousand feet and landed a mile away. They continued experimenting. One time a balloon landed in farmers' fields. They thought it was a monster, so they ran for axes and pitchforks. They cut the balloon to pieces. Finally the brothers settled on a design and added a basket underneath the balloon. The basket carried 3 animals: a sheep, a duck and a rooster. We're not sure of their exact responses, but it may have sounded something like, ["Quack! Baa! Cock-a-doodle-doo!"] This was the first time living things that could not fly were able to fly. Now flight was deemed safe for humans.

  • Picture: Sir George Cayley

    Our skies are not filled with balloons but they are filled with airplanes, so we must go back to the days of Sir George Cayley (1796-1855) who earned the title of "The Father of Aerial Navigation". His contributions to the field of aviation were many.

  • Picture:Alphonse Penaud

    In 1872, Alphonse Penaud designed the toy helicopter which one Milton Wright purchased and presented to his sons, Wilbur & Orville, in the fall of 1878.

  • Picture: Otto Lillienthal

    Otto Lillienthal (1848-1896) concentrated on how birds control their flight. Lillienthal used what he had learned to create the hang glider. He learned to control flight by shifting his body, as the birds do, while in flight. He made over 2000 flights, but during one tragic flight, his hang glider stalled and he fell to his death from a height of 50 feet. ["AHHH!"] News of his death sparked two men, who ran a bicycle shop, in America into action. Their last name was Wright.

  • Pictures: Wright Brothers & Kitty Hawk Flight

    Wilbur (1867-1912) and Orville (1871-1948) Wright, were two men who ran a bicycle shop in Dayton, Ohio. When they were young boys they became "turned on to flight" by their father, Milton, who had purchased the toy helicopter, designed by Alphonse Penaud. The news of Lillienthal's tragic death triggered a renewed interest in flight in them after they became adults. They searched everywhere for information which could help them learn about flight and flying. They armed themselves with all of the information of the day and then went to work to make that first flight possible. On December 17, 1903, the Wright brothers showed the world that they could make and fly an airplane. Indeed, men could finally fly.

  • Picture: World War II

    Soon afterward came WWI and WWII during which planes took on a vital role, and many countries sought out ways to improve the technology of the airplanes and even space flight. The rest is history.

  • Picture: Space Shuttle

(Some of this information came from www.yale.edu.)

Book for activity 2

How People Learned to Fly (Let's-Read-and-Find-Out Science 2)
How People Learned to Fly (Let's-Read-and-Find-Out Science 2)

This would be the best book to read aloud to a group. For hundreds of years people have wanted to fly. Countless tried and failed, but now flying is very common. Read and find out about the many obstacles that have been overcome so planes and people can soar through the sky.

 

The Four Forces of Flight

3. Review what we learned last week about air pressure, Bernoulli, & the Four Forces of Flight. Review “The Four Forces of Flight.” Have children act out the four forces:

Lift: The upward force that is created by the movement of air above and below a wing. Air flows faster above the wing and slower below the wing, creating a difference in pressure that tends to keep an airplane flying. [Have children raise up their arms and say, "lift."]

Gravity: The force that pulls all objects towards the earth. [Have children lower their arms and say, "gravity."]

Thrust: The force that moves a plane forward through the air. Thrust is created by a propeller or a jet engine. [Have children push their arms forward and say, "thrust."]

Drag: The air resistance that tends to slow the forward movement of an airplane. [Have children pull their arms back and say, "drag."]

Four Forces of Flight Demo Video Clip

Thrust & Control Surfaces

4. Mention that thrust = the force that moves a plane forward through the air. Thrust is created by a propeller or a jet engine. Thrust is the force that moves a plane through the air. Airplanes, including even the Foam Flyer we'll be making, use a variety of "control surfaces" to change the speed and direction in which they fly. Have children say, "control surfaces." Hold a model of an airplane (or a picture from a book) and point out the control surfaces:

Ailerons-movable sections, hinged on the rear edge of the wing near the wingtip, that cause the airplane to roll

Flaps-movable sections, hinged on the rear of the wing, that can be lowered to increase lift and drag during takeoff or landing

Stabilizer-the vertical stabilizer is the upright portion of the airplane tail, while the horizontal stabilizer is the small wing usually located on the back of the airplane.

YOU WILL NEED: a model of an airplane (or a picture from a book) and point out the control surfaces

Foam Flyer

5. Foam Flyer: Give each child the materials: a foam paper plate, scissors, masking tape, large paper clips, rubber bands, straws, pens, & rulers. Tell the children to fold back the bendable part of the straw and insert the rubber band into the fold. Fold the straw over the rubber band and secure the end with masking tape. This creates the launcher for the flyer. Instruct children to cut a triangle out of the foam plate from the flat inverted side of the plate. An equilateral triangle might work best for the shape. A good size to start with is 13 cm x 13 cm x 13 cm (or 5"x5"x5").*We will be using the leftover foam pieces later, so don't toss them out! Tape the paper clip to the front of the foam wings to add some weight. Then, tape the foam flyer over the paperclip so that it extends slightly over the tip.

YOU WILL NEED per child: 1 foam plate, scissors, masking tape, large paper clip, rubber band, bendable straw, pen, & ruler

Launching the Foam Flyer

6. Take the children outside to the "launching area" outside, or go to a large room without breakable items. Instruct each group on how to launch their foam flyer: Hook the rubber band around the tip of your thumb and pull back on the opposite end of the flyer. Release the straw and the flyer will fly forward. Call each group forward, one at a time, to launch their flyers. Each child should launch the flyer using two different amounts of thrust. They should first pull the nose of the flyer halfway to their elbow and let it fly. Next, they should pull the nose of the flyer all the way to their elbow and let it fly. The group should observe the changes in their flyer's flight and distance.

7. Discuss: Does the amount of thrust affect the Foam Flyer's flight? What other factors affect how your flyer flew? What did you observe when using different amounts of thrust to launch your Foam Flyer? Why was your flyer successful or unsuccessful? How does the thrust of the Foam Flyer compare to the thrust of a real airplane?

Redesign the Foam Fliers

8. Have the children cut wing flaps and ailerons into the back of the foam wings. Mention that balloons drift with the wind, but planes can turn in different directions and climb and dive because they have movable panels on their wings and tail called control surfaces. A glider has ailerons or movable flaps on its wings. These help the glider to tilt, bank, and turn. If you add a strip to the rear of the glider's fin (tail), this control surface is called a rudder. Children can also alter the weight of the flyer by adding weight behind the wings with tape or paper clips. They can use the leftover foam plate parts to add stabilizers and rudders. They can change the size of the foam wings. A few things to mention while the children are redesigning their foam fliers include:

- Real gliders have very long, narrow wings.

- Ailerons are control surfaces at the rear of the wing tips. They change the flow of air to make one tip rise and the other fall slightly. This makes the glider bank to one side and so its path tends to curve or turn around in a circle. The more the ailerons are angled, the steeper the bank and the tighter the turn.

- If the aileron angles downward, it changes the air flow over the airfoil shape and increases the force of lift. Also air coming off the bottom of the wing pushes on the aileron and forces it up. The combined effect is to raise the wing tip so the plane tilts or banks away from that side. With the aileron pointing up, the reverse happens and the wing tip is lowered.

- Depending upon the way the rudder is bent in relation to the ailerons, it can help the glider turn more tightly.

YOU WILL NEED: extra paperclips

Launching Redesigned Foam Fliers

9. After children have redesigned their foam fliers, take them back outside to test them again. After the first launch, allow them to make adjustments to their ailerons and rudders (bending them in different directions), and then have them launch them one last time.

10. Ask, "How differently did the Foam Flyer fly after modifications were made to the ailerons, flaps, stabilizers or rudder?" Show the children a few of the foam flyers that made impressive flights (distance, loops, etc.) and ask the children what changes in the design helped to make the foam flyer fly do what it did.

Some photos on this page were taken by one of the mothers in our co-op class who operates Michelle Harrison Photography.
Some photos on this page were taken by one of the mothers in our co-op class who operates Michelle Harrison Photography.

Balloon Jets

11. Remind children that thrust is the force created by a power source that moves the plane forward - either from a propeller or a jet engine. When the thrust is greater than the drag, a plane moves forward. The activity we are about to do demonstrates Sir Isaac Newton's Third Law of Motion: For every action, there is an equal and opposite reaction. A jet engine uses this principle by taking in air, a gas, on one side, energizing it by compression and rapid expansion, and using that energy to create a reaction, namely thrust out the opposite side. The balloon we will use will simulate the idea of compression and thrust, or rapid expansion. This experiment also shows the efficiency a jet engine has by channeling all the reactive energy in one pointed direction. Backward thrust of the air from the balloon produces the forward motion of the balloon.

12. Go outside (or to a large room), bringing the scissors & scotch tape with you. Designate 1 child (Child #3) in each group to be the balloon blower. Have the other children thread a fishing line through a straw. Have Child #1 & Child #2 work as string holders. They will stand at the designated starting & stopping places. They will stand on either side of the string to hold it taut. Child #3 will inflate the balloon, pinch off the end of the balloon so that no air is released, and use scotch tape to tape it to the straw. Then s/he will release hi/her hold on the balloon. Child #4 will work with Child #3 to use the tape measure to measure how far the balloon jet went. Child #4 will record the measurement on a sheet of paper. (If you are short on time or working with younger children, you can skip the step on measuring how far the balloon jet went. The difference in its movement with and without drag will be obvious without the measurements.)

YOU WILL NEED: balloon (sausage-shaped works best - but check if you can blow them up first because some are close to impossible to blow up. Regular balloons will work too), straws, spool of fishing line or yarn, scotch tape, writing utensil, tape measure, and paper

Optional Book on Newton's Laws to use for activity 11

Library Book: A Crash Course In Forces and Motion with Max Axiom (Rise and Shine)
Library Book: A Crash Course In Forces and Motion with Max Axiom (Rise and Shine)

This does a great job of explaining each of Newton's laws of motion in a manner that is engaging, understandable, and relevant. The illustrations are great and it uses fun scenery like a theme park, skate park, and swimming pool.

 

Changing Flight Patterns

13. Rotate the positions so that each child gets a turn to let go of the balloon jet BUT keep the balloon blower consistent. The below 3 alterations do not need to have their distances measured. Just have the children eyeball the difference in distance.

- One time tell the line holders to have 1 child hold his/her end of the string above his/her head and the other child squat down on the ground so that the line is angled.

- One time tell the line holders to give the line some slack and have it not be as taut. Tell them to experiment with how taut the line is and the angle of the line.

- One time tell the balloon blower to not blow the balloon up as much.

*Tell the children that we are going to make alterations to our balloon jets, so keep them in good condition.

14. Discuss: "What forces caused the Balloon Jet travel forward? What else affected the distance a Balloon Jet would travel?"

Drag & Balloon Jets

15. Ask the children what 4 forces act upon an aircraft (lift, gravity, thrust, and drag). The opposing forces balance each other. Ask, "What equals out thrust?" (drag) Ask, "What equals out lift?" (gravity). Tell the children that we will now study the force of drag = the air resistance that tends to slow the forward movement of an airplane. Drag is the force that acts against the forward movement of an airplane and slows it down. All moving objects experience drag. Let's see how drag can affect airplanes by seeing how it affects our balloon jets.

16. Pass out a paper plate to each group. Have them repeat the balloon jet activity; however, this time have them tape a paper plate to the front of the jet. (Be sure the plate does not get caught on line). Have the children use the tape measure to measure how far the jet went with the paper plate on the front, and write the distance down on the sheet of paper. Then allow each additional child to cut a bit off the paper plate, tape it to the front of the balloon, and let the balloon jet go. Those distances don't need to be measured. Just have the children eyeball the differences in the distance. After everyone has had a chance to release the jet with drag, compare the results.

YOU WILL NEED: paper plates (8-1/2" diameter), tape, & scissors

17. Go back inside. Ask, "Which jet went a shorter distance? Why? Why is it important for an aircraft to have less drag? How are aircraft designed to overcome drag? Would weight affect the flight of your jet in the same way?

Aeronautical Engineers & Parachutes

18. Aeronautical engineers design objects that move above ground through the atmosphere such as airplanes, parachutes, helicopters, etc. They differ from aerospace engineers in that they only design crafts that stay within the earth's atmosphere. Aeronautical engineers design parachutes. Parachutes are designed to slow the fall of a person from the air to the ground to prevent death or injury. Parachutes are designed to use air resistance, or drag, to counteract the weight of the person being "pulled" toward the ground by gravity. Drag is the force opposite the motion of an object through a fluid (in this case air). The more exposed material the parachute has, the more air resistance will be created. By increasing the surface area of a parachute, one can decrease velocity by increasing drag. Tell the children that they are going to each design a parachute. The goal is to create a parachute with the slowest velocity. Tell everyone to say, "velocity." Ask the children if they know what velocity is. Explain that velocity has to do with the speed of an object. Velocity can be measured by knowing the distance an object travels in a certain amount of time. The equation for velocity, or how to determine velocity is distance / time. When you're floating down through the sky in a parachute, you want to decrease your velocity. You don't want to dart through the air or you'll die or get badly injured. Who remembers how to decrease your velocity? (a parachute) What is the best type of parachute? (a large one) By increasing the surface area of a parachute, one can decrease velocity by increasing drag.

19. Give each child 3 feet of string, 1 coffee filter, 1 paper napkin, 1 plastic grocery store bag, 1 army man, and scissors. Tell them to use the scissors on the string and to poke holes in the parachute if needed. They will not want to make their parachute material smaller. Explain that they may select 2 of the 3 materials (coffee filter, napkin, and grocery store bag) to construct 2 prototypes of parachutes that they will compare. Remind them to choose the two materials they believe will make the best parachutes (i.e. have the slowest velocity). Have scotch tape available as well if they would like to use that to mend holes. Remind them that the tape will add weight, so it will increase the velocity of the parachute. (You can see examples of parachutes on p. 14 of the pdf file found at www.ceeo.tufts.edu)

YOU WILL NEED: (per child) 3 feet of string, 1 coffee filter, 1 paper napkin, 1 plastic grocery store bag, 1 army man, scissors, and scotch tape

Testing the Prototypes & Determining Velocity

20. Testing the prototypes. Once your group is finished (even if other groups aren't), take the children outside to the playground set OR have them stand on something tall like a ladder. Bring your tape measure, stopwatch, writing utensil, and paper. Have them get as high as they can and then drop their two parachute prototype parachutes at the same time. Children's height will have an effect on this, so have your shortest child go first. Determine from where that child drops their parachutes, and have the other children try to drop theirs from a similar distance. You, the mom, can use your stopwatch to determine the descent or how long each parachute takes to drop to the ground.

YOU WILL NEED: stopwatch, tape measure, writing utensil, and paper.

21. After everyone has gone, use the slowest time out of everyone's to determine velocity. Ask the children to remind you of how to calculate velocity. (distance/time). We know the time is ____. What else do we need to determine? (distance) Give 2 of the children the tape measure and have them measure the distance that the parachutes dropped. Write that down. Have the children calculate the approximate velocity. We will compare the "winning" parachutes inside, so remind the children to keep them in good shape. If your group finishes earlier than most of the other groups, they can watch the other groups. If your group is one of the last to go, have them go inside.

22. Write the velocity of your group's winning design on a sheet of paper. Have the child who designed that parachute with the slowest velocity stand in the front of the group. Place the children in order from fastest to slowest velocity and have them each tell everyone what material they used for their parachute and what their velocity was. Ask all of the children, "Which material was the most effective?" and then ask them, "What other factors might have affected the parachutes' velocity?" (Think about length of string, the cross sectional area of the chute, whether the parachute fell in straight or crooked path, etc.) Also ask, "How does a parachute create drag for a falling object?"

Drag Chutes

23. Now we will feel the force of drag. Airplanes are designed to be sleek so that drag is reduced, allowing easier movement through the air. Divide your group into the older 2 children and the younger 2 children. Give each pair of children a large garbage bag "drag-chute." Have them cut along one side and the bottom of the bag. This will make one flat sheet. Make sure the seams are solid with no holes! Have them roll up their "drag-cute" to make it like a rope.

YOU WILL NEED: large, heavy-duty garbage bags & scotch tape (if needed)

24. Take the children outside. Have the two oldest children run from the starting line, side by side, holding the drag-chute that is rolled up between them. (All the older children will run at the same time.) You, the mom, will need to time your pair and then write the time down on a sheet of paper. Then have the youngest 2 children run from the starting line, side by side, holding the drag-chute that is rolled up between them. (All the younger children will run at the same time.) Again, record the time of your pair. Now have the oldest 2 children go again, but this time have them open up their drag chute. Record the time. Have the younger 2 children go while the hold the drag chute open. Record the time. As you go inside, tell the children their times.

YOU WILL NEED: stop watch, writing utensil, & paper.

25. Ask, "What was it like running with the drag-chute closed compared to when it was open? What force caused you to slow down? Do you think a larger drag-chute would cause you to run even slower? Why? How are airplanes designed to keep the force of drag in mind?"

26. Review what we learned today.

(Most of the activity ideas from today came from the great lesson plan found at www.avkids.com)

Looking for more great picture books for this lesson?

Our Favorite Book on the Wright Brothers

The Flyer Flew!: The Invention Of The Airplane (ON MY OWN SCIENCE)
The Flyer Flew!: The Invention Of The Airplane (ON MY OWN SCIENCE)

This was my favorite. My boys (ages 9 and 5) both really enjoyed the book. Unlike many other books, this one focuses on the various steps they took to develop their plane. It includes their many trials and what they did to improve on them.

 
Click thumbnail to view full-size
My Brothers' Flying Machine: Wilbur, Orville, and Me by Jane Yolen - All images are from amazon.com.First Flight: The Story of Tom Tate and the Wright Brothers (I Can Read Level 4) by George SheaInto the Air: The Story of the Wright Brothers' First Flight by Robert Burleighhe Wright Brothers and the Airplane by Xavier NizThe Wondrous Whirligig: The Wright Brothers' First Flying Machine by Andrew Glass
My Brothers' Flying Machine: Wilbur, Orville, and Me by Jane Yolen - All images are from amazon.com.
My Brothers' Flying Machine: Wilbur, Orville, and Me by Jane Yolen - All images are from amazon.com.
First Flight: The Story of Tom Tate and the Wright Brothers (I Can Read Level 4) by George Shea
First Flight: The Story of Tom Tate and the Wright Brothers (I Can Read Level 4) by George Shea
Into the Air: The Story of the Wright Brothers' First Flight by Robert Burleigh
Into the Air: The Story of the Wright Brothers' First Flight by Robert Burleigh
he Wright Brothers and the Airplane by Xavier Niz
he Wright Brothers and the Airplane by Xavier Niz
The Wondrous Whirligig: The Wright Brothers' First Flying Machine by Andrew Glass
The Wondrous Whirligig: The Wright Brothers' First Flying Machine by Andrew Glass

More of Our Favorite Books on the Wright Brothers

We read MANY wonderful books on the Wright Brothers. These were our favorites. My Brothers' Flying Machine: Wilbur, Orville, and Me by Jane Yolen includes the little-know contributions of the Wright brothers' sister, Katherine. First Flight: The Story of Tom Tate and the Wright Brothers (I Can Read Level 4) by George Shea is told from the perspective of a boy who assisted the Wright Brothers in Kitty Hawk. It also makes a great reader if you have a child who needs to practice reading. We love intermingling various subjects and incorporating books that are related to our unit studies into phonics time. Into the Air: The Story of the Wright Brothers' First Flight by Robert Burleigh is written in a comic book style yet is filled with great information on the trials and triumphs of the Wright Brothers. Similar to this book in comic book format (and just as good) is The Wright Brothers and the Airplane by Xavier Niz. We also enjoyed Wee and the Wright Brothers by Gaffney, The Wondrous Whirligig: The Wright Brothers' First Flying Machine by Andrew Glass, and The Value of Patience: The Tale of the Wright Brothers (The New ValueTales Series, Volume 10).

Did you know that many people do not consider the Wright Brothers to be the first people to invent airplane?

The Fabulous Flying Machines of Alberto Santos-Dumont
The Fabulous Flying Machines of Alberto Santos-Dumont

This is a good picture book on Alberto Santos-Dumont, who is also considered by some to be the inventor of the first successful airplane.

 
Our Neighbor Is a Strange, Strange Man
Our Neighbor Is a Strange, Strange Man

This describes the trials and success of Melville Murrell who invented a working glider. The author suggests that what Murrell invented in 1876 should be considered the first airplane.

 
Click thumbnail to view full-size
Flying by Gail Gibbons - All images are from amazon.com.Into the Air: An Illustrated Timeline of Flight by Ryan Ann HunterWings by Jane YolenFeathers, Flaps, and Flops: Fabulous Early Fliers by Bo Zaunders
Flying by Gail Gibbons - All images are from amazon.com.
Flying by Gail Gibbons - All images are from amazon.com.
Into the Air: An Illustrated Timeline of Flight by Ryan Ann Hunter
Into the Air: An Illustrated Timeline of Flight by Ryan Ann Hunter
Wings by Jane Yolen
Wings by Jane Yolen
Feathers, Flaps, and Flops: Fabulous Early Fliers by Bo Zaunders
Feathers, Flaps, and Flops: Fabulous Early Fliers by Bo Zaunders

Our Favorite Books on the History of Flight

These were our favorite books that gave a nice overview of the history of flight, mainly leading up to the Wright Brothers. Flying by Gail Gibbons presents a brief history of flight, from balloons to more sophisticated means of air transportation such as helicopters, jet planes, and shuttles. Into the Air: An Illustrated Timeline of Flight by Ryan Ann Hunter is good if you skip the first section on "prehistoric flying creatures." It has beautiful illustrations and it looks at the technology of flight -- flying hunting weapons, flight legends and myths, kite technology, flying experimentation, and finally human flight. Wings by Jane Yolen was our favorite version of the Greek myth of Daedalus and Icarus. We also enjoyed Feathers, Flaps, and Flops: Fabulous Early Fliers by Bo Zaunders.

Our Favorite Books on Other Historic Flights

Hot Air: The (Mostly) True Story of the First Hot-Air Balloon Ride (Caldecott Honor Book)
Hot Air: The (Mostly) True Story of the First Hot-Air Balloon Ride (Caldecott Honor Book)

This has very few words, but the illustrations are delightful and humorous. It tells the story of the first passengers (farm animals) on the Montgolfier Brothers' hot air balloon. "Mouton's Impossible Dream" by Anik McGrory is another great story book told from the perspective of the sheep that was on the hot air balloon ride.

 
The Glorious Flight: Across the Channel with Louis Bleriot July 25, 1909
The Glorious Flight: Across the Channel with Louis Bleriot July 25, 1909

This excellent picture book tells the true account of the famous French aviation pioneer, Louis Bleriot, who was the first person to fly across the English Channel. Included in the story is that it took him 9 attempts to make a successful plane, but he continued to persevere.

 
Click thumbnail to view full-size
Flight: The Journey of Charles Lindbergh by Robert Burleigh - All images are from amazon.com.Mouton's Impossible Dream by Anik McGroryCharles A. Lindbergh: A Human Hero by James Cross GiblinNight Flight: Charles Lindbergh's Incredible Adventure (All Aboard Reading) by S. A. Kramer Good-Bye, Charles Lindbergh: Based on a True Story by Louise Borden
Flight: The Journey of Charles Lindbergh by Robert Burleigh - All images are from amazon.com.
Flight: The Journey of Charles Lindbergh by Robert Burleigh - All images are from amazon.com.
Mouton's Impossible Dream by Anik McGrory
Mouton's Impossible Dream by Anik McGrory
Charles A. Lindbergh: A Human Hero by James Cross Giblin
Charles A. Lindbergh: A Human Hero by James Cross Giblin
Night Flight: Charles Lindbergh's Incredible Adventure (All Aboard Reading) by S. A. Kramer
Night Flight: Charles Lindbergh's Incredible Adventure (All Aboard Reading) by S. A. Kramer
Good-Bye, Charles Lindbergh: Based on a True Story by Louise Borden
Good-Bye, Charles Lindbergh: Based on a True Story by Louise Borden

More of Our Favorite Books on Other Historic Flights

Flight: The Journey of Charles Lindbergh by Robert Burleigh was our favorite book on Lindbergh. It is well-written and well-illustrated. Other good books on him and his historic flight include Charles A. Lindbergh: A Human Hero by James Cross Giblin, Night Flight by S. A. Kramer, Charles Lindbergh by Saddleback Educational Publishing (a graphic illustrated story), and Good-Bye, Charles Lindbergh: Based on a True Story by Louise Borden. Mouton's Impossible Dream by Anik McGrory is another great story book told from the perspective of the sheep that was on the Montgolfiers hot air balloon ride.

Our Favorite Book on Amelia Earhart

Amelia And Eleanor Go For A Ride
Amelia And Eleanor Go For A Ride

This was my 9 year old son's favorite picture book on Amelia Earhart. The story is simple, fun, and historical. It is based on a true event.

 
Click thumbnail to view full-size
Fly High! The Story Of Bessie Coleman by Louise Borden - All images are from amazon.com.Amelia Earhart Free in the Skies (American Heroes) by Robert BurleighBrave Harriet: The First Woman to Fly the English Channel by Marissa MossThe Daring Miss Quimby by Suzanne George Whitaker Amelia Earhart: More Than a Flier (Ready to Read, Level 3) by Patricia Lakin
Fly High! The Story Of Bessie Coleman by Louise Borden - All images are from amazon.com.
Fly High! The Story Of Bessie Coleman by Louise Borden - All images are from amazon.com.
Amelia Earhart Free in the Skies (American Heroes) by Robert Burleigh
Amelia Earhart Free in the Skies (American Heroes) by Robert Burleigh
Brave Harriet: The First Woman to Fly the English Channel by Marissa Moss
Brave Harriet: The First Woman to Fly the English Channel by Marissa Moss
The Daring Miss Quimby by Suzanne George Whitaker
The Daring Miss Quimby by Suzanne George Whitaker
Amelia Earhart: More Than a Flier (Ready to Read, Level 3) by Patricia Lakin
Amelia Earhart: More Than a Flier (Ready to Read, Level 3) by Patricia Lakin

More of Our Favorite Books on Amelia Earhart & Women Pilots

We read through MANY books on Amelia Earhart and other women pilots. These were our favorites. Fly High! The Story Of Bessie Coleman by Louise Borden is a great true account about the trials of a woman with dark skin who worked hard to become a stunt pilot. Amelia Earhart Free in the Skies (American Heroes) by Robert Burleigh is written in comic book fashion. It provides plenty of historical information in a fun manner. Brave Harriet: The First Woman to Fly the English Channel by Marissa Moss is a great true account of the first woman to fly over the English Channel. Unfortunately, this potential headliner was pushed into obscurity by a bigger event that took place at the same time, the sinking of the Titanic. The Daring Miss Quimby by Suzanne George Whitaker is an equally great picture book about her. We also enjoyed Amelia Earhart: More Than a Flier (Ready to Read, Level 3) by Patricia Lakin, Amelia Earhart Free in the Skies by Robert Burleigh, and Flying Ace: The Story of Amelia Earhart by Angela Bull.

Animated History Of Aviation

Good Video Clips on the Wright Brothers

Ready for the next lesson?

Sailboat model from lesson on floating (part 2 of 5)
Sailboat model from lesson on floating (part 2 of 5)

Build an aluminum foil barge that can hold the most pennies, experiment with what floats and sinks and why, create working models of various ships and a submarine, design and build a variety of airplane and parachute models, and more during this 5 part hands-on unit study on floating and flying.

  • Buoyancy and Floating Lesson Plan - This is part 1 of a 5 part hands-on unit study on Floating & Flying (Fluid Mechanics). This week's focus is buoyancy (floating). Build an aluminum foil barge that can hold the most pennies, experiment with what floats and sinks and why, explore the relationship between density and buoyancy, and more!
  • Floating Ships and Boats Lesson - This is part 2 of a 5 part hands-on unit study on Floating & Flying (Fluid Mechanics). This week's focus is ships and boats. Create working models of sailboats, submarines, and hovercrafts, test out jet power, examine the impact of density of liquids and surface tension on floating, and more!
  • Air Pressure and Aeronautics Lesson - This is part 3 of a 5 part hands-on unit study on Floating & Flying. Discover the properties and power of air as you watch as air pressure blows up a balloon, sucks an egg into a bottle, collapses a can, holds water in an upside-down glass, and more!
  • History and Forces of Flight Lesson - This is part 4 of a 5 part hands-on unit study on Floating & Flying. Learn about the history of flight from the time of the Greeks through present day. Design and redesign foam fliers, balloon jets, parachutes, drag-chutes, and more as you examine the four forces of flight!
  • Paper Airplanes & The Four Forces of Flight Lesson - This is part 5 of a 5 part hands-on unit on Floating & Flying. Have fun while creating various types of paper airplanes in order to examine the relationship between plane design and the four forces of flight!
  • Floating and Flying Unit Presentations and Field Trip Ideas – This is the culminating activity for the five part hands-on unit on Floating & Flying. The children made ship and plane-themed dishes (recipes are included) and presented on famous planes or ships. Also included is where we went for field trips during this unit.
  • Fun, FREE Hands-On Unit Studies - I have posted over 35 hands-on unit studies (170 lessons) that focus primarily on science and social studies. In each lesson plan I have listed the activities that we did (and included photos), the books we read, YouTube video clips that we watched, and lapbook links that pair with the lesson.

Konos Volume I
Konos Volume I

Konos Curriculum

Would you like to teach this way every day?

Konos Curriculum

I use Konos Curriculum as a springboard from which to plan my lessons. It's a wonderful Christian curriculum and was created by moms with active children!

Konos Home School Mentor

If you're new to homeschooling or in need of some fresh guidance, I highly recommend Konos' HomeSchoolMentor.com program! Watch videos on-line of what to do each day and how to teach it in this great hands-on format!

© 2011 iijuan12

Comments, Questions, or Ideas - Please leave a note to let me know you dropped by. I LOVE hearing from you!

    0 of 8192 characters used
    Post Comment

    • LornsA178 profile image

      LornsA178 5 years ago

      Great detailed information. Thanks!

    • Blackspaniel1 profile image

      Blackspaniel1 5 years ago

      Nice lens