ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Safety Margin Versus Safety Factor

Updated on January 8, 2018
tamarawilhite profile image

Tamara Wilhite is a technical writer, industrial engineer, mother of 2, and a published sci-fi and horror author.

Introduction

This article covers how to calculate safety margins, how to calculate safety factors and the difference between the two. We'll also address how the factor of safety and safety margin are related.

The safety factor can be found by dividing the maximum stress something can sustain without failing by the stress it will generally experience.
The safety factor can be found by dividing the maximum stress something can sustain without failing by the stress it will generally experience. | Source

How Do You Determine The Safety Factor?

Safety factor can be found by finding ultimate strength of an item like a bridge and then dividing it by the working stress the bridge would be under. Safety factor can also be found by dividing the yield strength by the allowable or working stress.

Another way of calculating the safety factor is by dividing the maximum safe load just below the load at which the item will fail by the normal safety load it will generally experience. You can also estimate the safety factor by dividing the computed strength of a modeled load, but this value must be mediated by the uncertainties of the design and predicted usage. Safety factor can be found by dividing the fatigue limit to the maximum working stress. This will be the limit at which an object will fail divided by the highest load it will experience.


If a bridge can hold 10,000 tons and it will normally hold 5,000 tons, the safety factor is 10,000 divided by 5,000 or 2.0. If a chair can hold 300 pounds but normally seats people who weigh 200 pounds, the safety factor is 300 divided by 200 or 1.5.
What if you are calculating safety factor by dividing the fatigue limit to the maximum working stress? Using the example of an elevator, you would use the fatigue limit of the elevator cable at 3,000 pounds by the maximum working stress of 1,000 pounds for a safety factor of 3.0, not the average load of 500 pounds, which would give a safety factor of 3000 divided by 500 for 6.0.


Safety factors should never be less than 1.0, since this indicates that it is regularly subjected to its maximum load and almost certain to fail during expected usage. Safety factors of 1.5 or 2.0 suggest that the structure or object can handle its maximum expected load and unusual circumstances such as horrific traffic jams or high winds.
You cannot have a negative safety factor. If a theoretical design has a safety factor that is a fraction or less than one, the design is not safe. If your bridge has an expected yield stress of 500 tons and it is supposed to handle 600 tons of vehicles, the safety factor is 5/6 - and the bridge will probably collapse.

Calculating Safety Factor

 
 
 
Maximum Safe Load
Expected Load
Safety Factor
50 pounds
10 pounds
5.0
5,000 tons
1,000 tons
5.0
500 tons
200 tons
2.5
500 tons
500 tons
1.0

How Do You Determine The Safety Margin?

The safety margin or margin of safety is related to the safety factor, but they are not the same value. The safety margin is the safety factor minus one.


If a bridge is designed to hold 9,000 tons and regularly holds 3,000, the safety factor is 9,000 divided by 3,000 or 3.0. The safety margin for the bridge is then 3.0 minus one, yielding a safety margin of 2.0. If an elevator is designed to handle a 4 ton load before failing and regularly carries 2 tons, the safety factor is 4 divided by 2 for a safety factor of 2.0. The safety margin is then 2.0 minus 1 or 1.0.


The safety margin is fractional when the safety factor is between 1.0 and 2.0. For example, a safety factor of 1.5 minus one gives a safety margin of 0.5. Ideally, the safety margin is at least 1.0 while the safety factor is at least 2.0. However, increasing the robustness of a design typically increases its cost, if only in the additional materials and labor to make a thicker, heavier, more durable structure.


If the safety margin is one, the safety factor is zero. When the safety factor is zero, the object or design is already subjected to the maximum load it can tolerate - there is no margin for error. A negative margin of safety means the object will fail during expected usage.

Acceptable and Unacceptable Safety Factors and Margins of Safety

 
 
 
Safety Factor
Safety Margin
 
3 or higher
2 or higher
Acceptable
2
1
Borderline
1
0
Dangerous

Comments

Submit a Comment

No comments yet.

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: "https://hubpages.com/privacy-policy#gdpr"

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)