ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

How Muscles Function

Updated on November 13, 2010

Muscle is a tough contractile elastic tissue that gives form to the body and produces movement by contracting and relaxing. Muscles are responsible for every movement of the body. Working together, the muscles produce voluntary movements, such as walking and lifting, and also involuntary movements, such as breathing, circulating the blood, and opening and closing of the pupil of the eye. Muscles exist throughout the body. In an average adult male, muscles make up about 42 percent of the total body weight. In an average adult female they make up about 36 percent of the total body weight.

Striated Muscle

Striated, or skeletal, muscle accounts for most of the body's muscle tissue. In the human body there are 656 striated muscles, including all the muscles attached to the skeleton as well as the muscles of the tongue, palate, pharynx, and outer eye. Striated muscles produce a wide variety of movements, including walking, writing, and chewing. Most movements involve the action of several muscles. Some of the muscles may work in opposition to each other, one contracting while another relaxes. The coordinated action of the group of muscles allows motion to be smooth and coordinated, rather than jerky. Although striated muscles are voluntary, some also operate involuntarily. For example, the muscles that control breathing are striated and can be expanded and contracted at will, but under usual circumstances they operate automatically.

Striated muscles consist of bundles of cells, called fibers. The fibers are cylindrical in shape and range in length from 1 to 40 millimeters. (One millimeter equals one twenty-fifth of an inch.) Inside each cell are from several hundred to several thousand tightly packed strands, which are called myofibrils. Because the strands consist of alternating light and dark bands, striated muscle looks striped when seen through a microscope.

Surrounding every striated muscle is a sheath of white connective tissue, called the epimysium, which extends beyond the muscle at each end to form the attachments to the bones. Most striated muscles are attached to two bones and cross a joint. One bone usually remains fixed. The other bone is generally movable because of the joint which attaches it to the fixed bone. The attachment of the muscle to the fixed bone is called the origin and the attachment to the movable bone is called the insertion. When a striated muscle contracts, it usually brings the insertion closer to the origin.

Smooth Muscle

Smooth, or visceral, muscles are present in the walls of nearly all hollow organs, including the esophagus, stomach, intestines, windpipe, bladder, ureters, blood vessels, gall bladder, and hair follicles. Smooth muscles perform most of the body's involuntary movements and are regulated by the autonomic nervous system.

The individual fibers of smooth-muscle tissue are slender spindle-shaped cells ranging from 1/67 mm. to 1/5 mm. in length. Although the cells contain myofibrils, the light and dark bands are not obvious and the cells do not appear striped. Sometimes the cells are arranged in small bundles, but generally they are grouped into dense sheets or bands. In a tubular organ, such as the esophagus, the smooth-muscle tissue usually forms two layers, one consisting of cells that encircle the tube and the other consisting of cells that lie parallel to the direction of the tube. The two layers contract and produce rhythmic waves in the walls of the tube, pushing along any material in the tube.

Cardiac Muscle

Cardiac muscle, also called myocardium, is present only in the heart, where it forms the thick walls of the four-chambered organ. Like smooth muscle, cardiac muscle is involuntary. It begins its rhythmic contractions during the embryo's second month of development and continues beating until death. Cardiac muscle is controlled by a special group of muscle cells that lie within the heart. In this respect, cardiac muscle differs from other muscles because its contractions are not controlled by nerves. Only the rate of heartbeat may be regulated by nerves.

Cardiac muscle is composed chiefly of thick bundles of cells that wind about the heart in spirals. The individual fibers are long slender branching cells so closely attached to each other that they seem to form a continuous network. Although the myofibrils in each cell are more conspicuous than those in smooth-muscle fibers, they are somewhat less obvious than the myofibrils in striated muscle cells.

Muscle Functioning

Most research concerning the functioning of muscle cells has been conducted on striated muscle. However, it is believed that smooth and cardiac muscles work in much the same way.

Stimulation. All muscles are stimulated to contract by an electrical impulse. Generally the impulse is transmitted by a nerve cell that comes into contact with the muscle fiber. At the point of contact, known as the myoneural junction, the nerve ending transmits an impulse to the muscle fiber by secreting a special chemical, called acetylcholine. Little is known about the process, but it is believed that the acetylcholine brings about changes that cause the fiber to contract.

Contraction. The structures responsible for shortening the muscle fiber are the many tiny myofibrils inside it. The myofibrils are believed to consist of about 2,500 short filaments, called micelles. Some micelles are composed of a protein material, called actin, and some are composed of a similar material, called myosin. Just before contraction the actin and myosin filaments come into contact and form a compound called actomyosin. It is believed that the newly formed actomyosin shortens, making the fiber contract.

The energy for muscle contraction is supplied by the molecules of adenosine triphosphate (ATP) that are present in the cells. Because muscles are usually working a large part of the time, they need a fairly constant supply of ATP molecules. Generally, ATP is formed during cellular respiration, the process in which oxygen is combined with food molecules to release energy. Most of the time enough oxygen is present in the fiber to carry on cellular respiration. However, at times when the muscles are working continuously, such as during exercise, a shortage of oxygen may develop. The muscle tissue is then said to build up an oxygen debt. After the muscles stop working and relax, they need large amounts of oxygen to make up the debt. For this reason a person often pants or breathes hard after strenuous exercise. The panting supplies more oxygen to the muscles.

Muscle Fatigue. After a muscle is stimulated, it contracts for about four one-hundredths of a second. It then enters a recovery period, which lasts about five one-hundredths of a second. Sometimes, however, a muscle is stimulated repeatedly at such a rapid pace that its fibers do not have a chance to recover fully and muscle fatigue develops. The muscle's responses to stimulation become weaker and weaker, and eventually it does not respond at all. Only after stimulation has stopped and the muscle has completely recovered can it be stimulated to contract again.

Muscle Tone. All muscles, even when they are not stimulated, have some fibers in a state of contraction. This partial contraction, called muscle tone, keeps the muscles taut enough so that they can contract quickly when stimulated. The degree of muscle tone varies in different people and even in the same person at different times. It is highest when a person is exercising, cold, or tense, very low when a person is asleep, and completely lacking during unconsciousness.

Comments

    0 of 8192 characters used
    Post Comment
    • profile image

      me again 

      7 years ago

      i like muscles, they are so asweme!!!!!!!!!!!!!!!!!!!!!!!!!!!!!, kind of

    • profile image

      Susan 

      7 years ago

      Woooow!!!!!! That is so cool.:P..............I think

    • profile image

      ASMA 

      7 years ago

      ALSO INCLUDE THE FUNCTIONS OF MUSCLES........

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)