ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Switch On And Off Led Remotely Using Adafruit IO Platform

Updated on November 19, 2019
timothy-malche profile image

Tim is currently doing research in Internet of Things (IoT). His desire to spread the concept, ideas, and experience of IoT.

Adafruit IO (AIO) platform provides an easy way to develop Internet of Things (IoT) applications. Since AIO supports MQTT protocol, it makes communication faster. AIO also provides graphical interface to create widgets for your devices.

Components Required

  • NodeMCU Development Board X 1
  • LED X 1
  • Resistor (220 Ohm) X 1
  • Male-To-Male Jumper Wires (Optional) X 2
  • Breadboard (Optional) X 1

Circuit Diagram

Connect LED to NodeMCU pin 'D6' using 220 Ohm resistor as shown in following figure.

Preparation

Please follow the instruction given under 'Environment Setup' section in my another tutorial by clicking this link to set up the environment for the tutorial.


Arduino Code

You need to upload following code to NodeMCU using Arduino IDE. Please remember to update your WiFi SSID and password on lines 7 and 8 and Adafruit IO username and API key in the lines 14 and 15. Please follow the instructions below to retrieve your Adafruit IO Key.

#include <ESP8266WiFi.h>
#include "Adafruit_MQTT.h"
#include "Adafruit_MQTT_Client.h"

/************************* WiFi Access Point *********************************/

#define WLAN_SSID       "YOUR_WIFI_SSID"
#define WLAN_PASS       "YOUR_WIFI_PASSWORD"

/************************* Adafruit.io Setup *********************************/

#define AIO_SERVER      "io.adafruit.com"
#define AIO_SERVERPORT  1883                   // use 8883 for SSL
#define AIO_USERNAME    "YOUR_AIO_USERNAME"
#define AIO_KEY         "YOUR_AIO_KEY"

/************ Global State (you don't need to change this!) ******************/

// Create an ESP8266 WiFiClient class to connect to the MQTT server.
WiFiClient client;
// or... use WiFiFlientSecure for SSL
//WiFiClientSecure client;

// Setup the MQTT client class by passing in the WiFi client and MQTT server and login details.
Adafruit_MQTT_Client mqtt(&client, AIO_SERVER, AIO_SERVERPORT, AIO_USERNAME, AIO_KEY);

/****************************** Feeds ***************************************/

// Setup a feed called 'photocell' for publishing.
// Notice MQTT paths for AIO follow the form: <username>/feeds/<feedname>

// Setup a feed called 'onoff' for subscribing to changes.
Adafruit_MQTT_Subscribe onoffbutton = Adafruit_MQTT_Subscribe(&mqtt, AIO_USERNAME "/feeds/onoff");

/*************************** Sketch Code ************************************/

// Bug workaround for Arduino 1.6.6, it seems to need a function declaration
// for some reason (only affects ESP8266, likely an arduino-builder bug).
void MQTT_connect();

void setup() {
  Serial.begin(115200);
  delay(10);
  pinMode(D6,OUTPUT);
  Serial.println(F("Adafruit MQTT demo"));

  // Connect to WiFi access point.
  Serial.println(); Serial.println();
  Serial.print("Connecting to ");
  Serial.println(WLAN_SSID);

  WiFi.begin(WLAN_SSID, WLAN_PASS);
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println();

  Serial.println("WiFi connected");
  Serial.println("IP address: "); Serial.println(WiFi.localIP());

  // Setup MQTT subscription for onoff feed.
  mqtt.subscribe(&onoffbutton);
}

uint32_t x=0;

void loop() {
  // Ensure the connection to the MQTT server is alive (this will make the first
  // connection and automatically reconnect when disconnected).  See the MQTT_connect
  // function definition further below.
  MQTT_connect();

  // this is our 'wait for incoming subscription packets' busy subloop
  // try to spend your time here

  Adafruit_MQTT_Subscribe *subscription;
  while ((subscription = mqtt.readSubscription(5000))) {
    if (subscription == &onoffbutton) {
      Serial.print(F("Got: "));
      String status = (char *)onoffbutton.lastread;
      Serial.println(status);
      if(status.equals("ON")){digitalWrite(D6,HIGH);}
      else if(status.equals("OFF")){digitalWrite(D6,LOW);}
    }
  }
}

// Function to connect and reconnect as necessary to the MQTT server.
// Should be called in the loop function and it will take care if connecting.
void MQTT_connect() {
  int8_t ret;

  // Stop if already connected.
  if (mqtt.connected()) {
    return;
  }

  Serial.print("Connecting to MQTT... ");

  uint8_t retries = 3;
  while ((ret = mqtt.connect()) != 0) { // connect will return 0 for connected
       Serial.println(mqtt.connectErrorString(ret));
       Serial.println("Retrying MQTT connection in 5 seconds...");
       mqtt.disconnect();
       delay(5000);  // wait 5 seconds
       retries--;
       if (retries == 0) {
         // basically die and wait for WDT to reset me
         while (1);
       }
  }
  Serial.println("MQTT Connected!");
}

Building Application

Create an account on AIO and sign in using your credentials.

After login get the AIO Key by clicking the link provided at top right to retrieve username and key for Arduino code as shown in following figure.

Use this key in your Arduino code and upload the code to NodeMCU.

Now let's build the user interface on AIO platform. First you need to create the dashboard. If you have already built a dashboard from my tutorial Control Led Brightness using Adafruit IO Platrorm, then you can use same dashboard otherwise create a new one. To build the dashboard, Click on Actions->Create New Dashboard and name your dashboard as show below.

Your dashboard named 'AIO_Controller' will be created.

Click on dashboard name to open following screen where you can create widget to control your LED.

Click the '+' button to create a new block. This block will be your widget, an Of/Off button in this tutorial.

From the 'create new block' dialog box as in the following figure, choose 'Toggle'.

Now create a feed named 'onoff' as following. This feed is used in your arduino code line 33, therefore they must be the same. Actually is the MQTT topic.

After creating the feed, select the feed for the block you are creating and click next.

It will open 'Block setting' dialog box. Provide settings as following.

Please note that I left the button on text as 'ON' and button off text as 'OFF' because I am using this text in my code. You can use anything or even 1 and 0, but you have to modify your Arduino code accordingly. This the the message that will be published on MQTT topic.

Now click create block button at bottom.

Your widget will be created as following which you can use to control the LED.

Is this article helpful?

See results

Comments

    0 of 8192 characters used
    Post Comment
    • timothy-malche profile imageAUTHOR

      Timothy Malche 

      8 months ago from Jabalpur, M.P., India

      Thanks

    • pdlwaste solutionsllc profile image

      pdlwaste solutionsllc 

      8 months ago from Edgerton,USA

      VERY HELPFULL

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://maven.io/company/pages/privacy

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)