ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Make Your Own 3-D Photos and Projects - Part 3

Updated on April 9, 2011

With the camera you have now, you can make 3D photos, even though it isn’t designed for 3D work.

I’ve shown you how to do simple 3D drawings in an earlier hub, and then I demonstrated how to do “Magic Eye,” or what I called “Perceived Depth Images.” Now, you’re ready to do something a little more simple: taking 3D photos of the mountains and clouds around you, and of your family and friends. The photo set above can be copied for experimental use only, to test the 3-D effect. It is designed to be viewed by diverging your eyes, a trick I taught in the first article of this series. (The following information is copyrighted as of and by way of the publication of this article.)

The first thing I would have you do is to take your camera, and get into a car where someone else is driving. Find a good mountain scene, or beautiful clouds, or an impressive sunset. (Note that there's no need to use a tripod; most "misfires" can be solved by moving the viewers (see below) until the pics line up. Or, if you're going to use a computer to process the pics and arrange the pair, you can crop one pic to fit the other.) While your friend is driving at a reasonable speed, point your camera at a unique spot. Snap a picture, point your camera at the same spot, then snap another picture. Do this as often as you’d like. A general rule of thumb in knowing how far to move between pictures is: move until you see a small separation or shift between two distant mountains or hills that overlap.

When I first started this, I used 35mm film and had the photo-developers make slides. I then bought two simple slide viewers that weren’t too large. In other words, I wanted something that didn’t put the separate viewing lenses further apart than my two eyes when the two viewers were placed side-by-side. The first picture I took was put in the left viewer, and the second was in the right one. I moved the viewers until the two pictures combined into one, and voila! a 3D image popped out at me. Once your eyes combine two pictures like this, the whole 3D scene will stay together, even if you move one viewer a little without moving the other.

Someone once showed me two pictures he took of his girl friend. (Often, people take two pictures of the same scene just to make sure they get it right.) After I examined the photos, I did a crossed-eyed look at them (they were too big to let me diverge my eyes) and noticed that the two made a perfect 3D picture. My friend had done 3D without realizing it!

I took a picture of Timpanogos Mountain in Provo, Utah using this system. Upon viewing the 3D image, I found that the small mountain in front of it was further from Timpanogos than what my two eyes could determine. I concluded that our eyes are too close together to truly see 3D on a large scale.

Once, I took a picture of a sunset where its rays were shooting skyward, separated by clouds. When I looked at the 3D results, the rays appeared to come toward me, missing me by just a few yards above my head. What an amazing eye-opener that was!

The wonder of this system I invented lasted for a while, until I became a bit unhappy with the overall effect: the mountains always appeared very small. I theorized that the reason this happened was two-fold: With snapshots 20 or more feet apart, it was like a giant was looking at the scene, a giant with 20 feet between his two eyes! To a giant that tall, the mountains, indeed, would look small to him. Also, I was looking at slides, which made the view very tiny.

Figure 1 - The mirror can be mounted in a large pill bottle or a block of wood with a slot in it.
Figure 1 - The mirror can be mounted in a large pill bottle or a block of wood with a slot in it.

So when digitized cameras came out, along with computers and color printers, I decided to print out my photos on 8-1/2 x 11 paper. I put the two pieces of paper into a loose-leaf binder. I used a mirror to deflect the line of sight of my right eye, and printed a reversed image of that right side. See Fig. 1 for how this works.

Most of the time, when you take two photos so far apart, you’ll get two different foregrounds. Normally, this does not destroy the 3D effect of the more distant background. It’s like when you’re hiding in the bushes, and each eye sees different twigs or leafs. You learn to just “see through” those close-up images. For example, if you hold your fingers close to your eyes while looking at something more distant, you'll see what you want quite clearly. People learn to ignore such transparent and close-up images. However, in my next series on 3D work, I’ll show you what I do to solve that problem, in case you wish to make your finished product more impressive.

Meanwhile, enjoy this simple procedure, and please give credit to “Sam Antone’s” invention if you use it (My pseudonym is Sam Antone, the name I used when I came to HubPages originally). If you sell anything made from this system, let’s talk about it.


    0 of 8192 characters used
    Post Comment

    No comments yet.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)