ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

The Famous ‘Five’ in Modern Astronomy

Updated on May 25, 2013

Nicholos Copernicus

Source

The foundations of Modern Astronomy were laid by Copernicus, Tycho Brahe, Kepler, Galileo and Newton.

Nicholos Copernicus

Nicholos Copernicus (1473 – 1543 A.D.) inaugurated a new era in astronomy by discarding the old belief in the geocentric motion of the sun and the planets. In his book ‘Revolution of the celestial bodies’, he explained the motion of the earth and other planets around the sun in circular orbits with the sun at the centre and also that of the moon around the earth in a similar orbit. He assumed that earth revolves around the sun once a year and rotates about an axis through its centre once a day from west to east.

Tycho Brahe

Source

Tycho Brahe

Tycho Brahe (1546 – 1601 A.D.) of Prague was a famous Swedish astronomer. He gave Tychonic system with stationary earth, the sun and moon moving around the earth and the planets moving around the sun. He could not see the different phases of Venus and Mercury. So he did not believe in the Copernican Theory of heliocentric motion. But he left behind him a collection of his observations which helped his successor Kepler for his excellent discoveries.

Johannes Kepler

Source

Johannes Kepler

Johannes Kepler (1571 – 1630) was the greatest German astronomer. He joined Tycho Brahe in 1600 and succeeded him as the Imperial Mathematician. After studying for two decades, he formulated his famous three laws of planetary motion. Kepler accepted Copernican theory of heliocentric motion of planets and established elliptical orbit of the planets around the sun. He tried one hypothesis after another to fit the observational data of his predecessor and finally arrived at his laws in 1618. Next year he published the three laws in his ‘Harmonics’.

Galileo Galilei

Source

Galileo Galilei

Galileo Galilei (1564 – 1642 A.D.) was the great Italian astronomer. He disproved the statement made by Aristotle 2000 years before that heavier body falls more quickly. He proved by dropping two bodies of different weights from the leaning tower of Pisa. Galileo believed in the Copernican Theory of heliocentric motion of planets. He was the pioneer of the telescope. With his telescope, he saw the planet Jupiter and its satellites and also the phases of Venus. He established the rotation of earth by experiments. He wrote a book ‘Dialogues on the Ptolemic and Copernican systems’ in which he supported Copernicus and challenged the ideas of Aristotle and Ptolemy. He was considered as enemy of the Church and was humiliated.

Sir Isaac Newton

Source

Sir Isaac Newton

Sir Isaac Newton (1642 – 1727) was the chief architect of Modern Astronomy. He was the pioneer of Dynamics and Calculus. He contributed a lot to Mathematics and Astronomy. Newton introduced his theory of universal gravitation. Every particle of matter in the universe attracts every other particle with a force that varies directly as the product of their masses and inversely as the square of the distance between them. This was a very brilliant idea and it explained how the sun pulls the planets and causes them all to orbit around it and how the earth pulls the moon and keeps it in its orbit. He explained his principle of universal gravitation and other Mathematical findings in his book ‘Principia Mathematica’.

Hats off to these great people.

If you found this post useful, I would really love it if you pin it or share it with your Facebook fans or Twitter followers today. All it takes is a simple click on the “pin it” “like,” “share,” or “tweet,” near the post. It will keep me motivated. Thank you!

The best Modern Astronomer

Whose contribution do you think made the birth of modern Astronomy?

See results

Comments

    0 of 8192 characters used
    Post Comment

    • profile image

      Peter L. Griffiths 

      3 years ago

      Isaac Newton's Inverse square law is Newton's unsuccessful attempt to divide Kepler's Distance Law v^2 =1/r by Galileo's Law of Falling bodies v^2 = r to obtain the centripetal force of F =1/r^2. Unfortunately Newton fails to recognise that in Kepler's distance law, the distance r is the distance from the Sun focus, whereas in Galileo's law of falling bodies the distance r is distance from the Empty focus, so that the quotient should be F =1, not 1/r^2.

    • profile image

      Peter L. Griffiths 

      4 years ago

      There is a little known paper by Kepler Concerning Conic Sections included in his book on Optics published in 1604. This paper is full of mistakes originating from the works of Apollonius of Perga and Eutocius of Ascalon who were trying to unify the theory of the 5 conic sections, the straight line, the circle, the ellipse, the parabola and the hyperbola. Kepler thought that his newly discovered concept of the focus would help in this, particularly his recognition that pins and thread applied to foci might help in constructing the conic sections. It was not until 1618 that Kepler recognised that the location of the Sun was at a common focus for the orbits of the planets.

    • profile image

      Peter L. Griffiths 

      5 years ago

      Further to my previous comments, the connection between Galileo's v^2=d at the empty focus end of the elliptical orbit and Kepler's v^2=(1/r) at the Sun focus is mathematically very interesting and not at all straight forward. Kepler's version can be adapted for further research purposes by including the constant V being the maximum velocity, then the variable velocities can be expressed as V/#r where # is my notation for square root. In this way the same velocity arises on both the accelerating side as well as on the decelerating side, but in opposite directions. As one of the properties of all perfect ellipses d is the distance from the curve to the empty focus, and r is the distance from the curve to the Sun focus, d+r equals the major axis of the elliptical orbit.

    • profile image

      Peter L. Griffiths 

      6 years ago

      Kepler's area law for time taken can be initially compared with the area of a right angle isosceles triangle t=rXrX(1/2). Let the (1/2) become a power and we have t=rXr^(1/2) which is Kepler's distance law v=r/t=1/r^(1/2) which applies throughout the whole universe.

    • andrebreynolds profile image

      andrebreynolds 

      7 years ago

      They are all the BIGGEST names I've ever known when talking about astronomy.

    • Rubanraj profile imageAUTHOR

      Rubanraj 

      7 years ago from South India

      Thank you Peter for adding more comments.

    • profile image

      Peter L. Griffiths 

      7 years ago

      Further to my previous comments, Galileo's law of falling bodies v^2=d can be reconciled with Kepler's inverse square law v^2=1/r as

      v^2=d=1/r, let L indicate a small change then we have

      v^2+Lv^2=d+Ld=1/(r-Ld). This is the usual method of measuring velocity. For the reciprocal method of measuring the same velocity we have

      v^2+Lv^2=r+Lr=1/(d-Lr). The same velocity can be measured as distance per unit time or time per unit distance, one method is the reciprocal of the other. There are only three variables, distance, time and velocity. d+r equals the major axis of the elliptical orbit.

    • profile image

      Peter L. Griffiths 

      7 years ago

      Further to my previous comment, two of Kepler's laws are stated in the Introduction to Astronomia Nova(1609), these are that the velocity of the planets is inversely related to their distance from the Sun, and that planetary orbits are elliptical. Greater mathematical precision was given to these discoveries in Kepler's later works and also the important concept of the foci.

    • Rubanraj profile imageAUTHOR

      Rubanraj 

      7 years ago from South India

      Several astronomers tested Kepler's theory against astronomical observations. For instance, Pierre Gassendi observed the transit of Mercury in 1631 and confirmed Kepler's prediction. Thank You, Peter.

    • profile image

      Peter L. Griffiths 

      7 years ago

      The main motive for Kepler's discoveries was to adjust the recorded observations to take account of Copernicus's discovery that the Earth as the observation point was not stationary but orbited round the Sun.

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)