ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Physics: What is Light?

Updated on May 22, 2013

What is light? It is ubiquitous in our everyday lives, and is critical to human functioning. Yet it is so intertwined with our experience of nature many of us have never stopped to ponder it. In fact, the way that light operates – groan alert – sheds a great deal of light on the Universe’s physical nature. Technically, the visible light that we humans see is a type of electromagnetic radiation. The manner in which this radiation operates is critical to understanding how reality operates at a basic level. Light is an interesting because, in terms of physics, it behaves both as a particle and a wave, a property known as wave-particle duality. Wave-particle duality is a central concept of physics, and it explains how light behaves.

Properties of Light

First, a few specifications. Light with wavelength between 390-750 nanometers occurs in the “visible spectrum.” This is light that humans can see. “Light” outside these parameters is not visible. Light moves very quickly and its speed, in a vacuum is 299,792,458 meters per second. This speed is a bedrock “cosmic speed limit” – it is fastest speed possible. Some other main properties of light are intensity and polarization.



All types of light, including those invisible to the human eye, occur somewhere on the electromagnetic spectrum. Where a type of electromagnetic radiation appears on the spectrum depends upon its wavelength. Those types with higher frequencies have shorter wavelengths and those with lower frequencies have longer wavelengths. Light that occurs in the visible spectrum has a relatively long wavelength.

Units and Measures of Light

Light is typically measured in two sets of units – radiometry and photometry. Radiometry measure the power of light at all wavelengths, while photometry measures light in terms of brightness as perceived by the human eye. Photometry is more easily used to determine lighting requirements for humans.

Max Planck

Max Planck
Max Planck | Source

Wave-Particle Duality & Quantum Mechanics

Early in the 20th century, physicists such as Max Planck, Albert Einstein, and others, worked to further explain particle theory of light and wave theory of light. Those were the early understandings of how light behaves. The work of Planck and Einstein gave rise to the idea of wave-particle duality theory of light, a mainstay of modern quantum mechanics. Experiments at the beginning of the 20th century showed light behaving as a wave. And, experiments with the photoelectric effect highlighted the particle theory of light.

This means that everything above, about wavelengths, frequencies, and so forth, is accurate – but incomplete. Light can be accurately described as a wave and its properties described in such terms. But light’s components also functions as particles. Thus, light waves can be described like sound waves, or like waves in water. But it can also be described as a stream of particles – in the case of light, as particles called photons.

This wave-particle duality is a bedrock principle of quantum physics and is often described as a paradox. But, in certain respects, it comports with common sense. Think back to the example of other waves with which we are familiar. Sound waves are vibrations traversing air. Water waves are gyrations traversing water. But what, exactly, is gyrating as a light wave moves (at the cosmic speed limit) from, say, the computer screen to your eyes as you read? The answer, at a high level of abstraction, is that space-time itself is gyrating – the very fabric of reality. But how, exactly, does that happen? It’s not as if space-time is comprised of matter, the way that air and water are; rather, space-time is the fabric upon which such matter is situated. It turns out that the mechanism is by the motion of photons upon – or, arguably, within – space-time.

This action – the motion of tiny particles such as photons – in turn gets to some of the foundational issues of quantum physics. For example, the 2012 all-but-certain isolation of the Higgs-Boson drew attention to the relationship between subatomic particles and the underlying reality within which they operate. In short, it appears that these tiny particles are intimately related to space-time: not as bits of matter independent of the Universe’s underlying fabric, but as emergent bits of reality intertwined with the framework within which they operate.


    0 of 8192 characters used
    Post Comment

    • Manna in the wild profile image

      Manna in the wild 

      6 years ago from Australia

      You summarised the topic very well. I'm interested in your source or reasoning about the idea, "space-time itself is gyrating".

      The standard description of a photon is as the 'force-carrier' in the E.M. field. Space-time is the backdrop for the Einsteinian description of gravity and is a geometric construct, while the Higgs boson is to the Higgs field, as the photon boson is to the E.M. field and these fields (plus others) are real. i.e. the fields are really "out there", permeating all of space.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)