ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Quantum Field Theory: What is a Quantum Field?

Updated on January 31, 2013
Placing iron filings around a magnet shows the magnetic field.
Placing iron filings around a magnet shows the magnetic field.

Quantum field theory brings together quantum mechanics and relativity. It is the mathematical language in which the standard model of particle physics is written.

What is a quantum field? Most people will be familiar with the concept of classical fields, for example electromagnetic fields. Fields are used to explain how a force can be transmitted over a distance. For instance, how does the magnet in the picture 'push' the iron filings into that pattern without touching them? The answer is that a field exists around the magnet, which exerts a force on the iron filings causing them to line up along the field lines.

In the classical theory, we can predict the particle's trajectory exactly.
In the classical theory, we can predict the particle's trajectory exactly.

In particle physics, we use fields to describe particles. In quantum physics, particles are not thought of as point-like objects. The uncertainty principle of quantum mechanics tells us that we cannot know the exact location of a particle. The location of the particle is described using a probability field, which is strongest at the points where the particle is most likely to be found and weakest where we are unlikely to see the particle.

In the quantum theory, there are many possible paths.  Here we show just three possibilities.  The probabilities of each path must be summed in a path integral.
In the quantum theory, there are many possible paths. Here we show just three possibilities. The probabilities of each path must be summed in a path integral.

Path Integrals

This quantum uncertainty means that we cannot be sure what a particle is doing when we are not looking at it. If we observe a particle at point A, and some time later observe it at point B, we do not know what path it has taken to get from A to B. Quantum mechanics tells us that in order to calculate the probability of observing the particle at B after having seen it at A, we must add up the probabilities of all the paths it could possibly have taken from A to B. Feynman showed that this summing up of paths can be approximated by an integration over all the paths known as a path integral.

This expression means: "add up the “probability” exp(S[q]) of each of the paths q1, q2, etc... to get the probability of finding the particle at B". The classical path is the most likely so it has the largest contribution to the integral. When we consider everyday objects, which are much larger than elementary particles, the contribution from the classical path is overwhelmingly larger than from any of the other paths, which is why we do not see everyday objects behaving in a quantum way.

These integrals are rather complicated and difficult to evaluate. Fortunately, Feynman invented a pictorial way of representing them, known as Feynman diagrams.

Quantum field theory is a powerful mathematical tool which underpins the whole of modern particle physics theory. It is also used in statistical physics, cosmology, and theories of quantum gravity, which aim to find a “theory of everything” that is free from the inconsistencies that currently exist between general relativity and quantum physics. Resources for learning more are listed below.


An Introduction To Quantum Field Theory (Frontiers in Physics)
An Introduction To Quantum Field Theory (Frontiers in Physics)

Peskin and Schroeder is the ultimate quantum field theory textbook. I found this book invaluable during my degree.


topquark works as a researcher in theoretical particle physics and blogs about research at The Particle Pen.


    0 of 8192 characters used
    Post Comment
    • Coolbreezing profile image

      James Dubreze 

      7 years ago from New York, New York

      I would also like to ask how does the particle behave under different environment, such as temperature. If differences in temperature change the behavior of the particle, than temperature is a force acting on the particle, then what other forces could there be there?

    • Coolbreezing profile image

      James Dubreze 

      7 years ago from New York, New York

      Interesting hub, you made it very easy to understand. However, I would like to ask how practical is it to locate a particle in quantum physic without a perimeter or a field as you mentioned in particle physics?

      I would have thought that since there are infinite possible path in which a particle could travel, than to locate which position using the probability field to find a particle is like trying to tap into an infinity amount of path which of-course seems impossible. For that matter the behavior of a particle using the probability field should appear as if this particle as disappeared from field " A" to field "B".

      The next question I'm thinking about is that could it be that there are other similar particles that are invisible within the same field, and that the particle we think is the same is actually a different particle with similar characteristic. If this was the case we could not have predicted how a particle moves within a field.

      In that sense, we would have had to find out why is the particle visible in this field while it is not in another field. If there is a force acting on the field which causes the particle to suddenly appear, than we would have had to find out what's causing this force. I'm not a physicist but I thought this was a reasonable question to ask. Thanks for making it simple to understand.

    • Spirit Whisperer profile image

      Xavier Nathan 

      8 years ago from Isle of Man

      You have written another very easy to follow hub that explains the concept in a way that anyone can understand. I also think that the resources you provide for further reading are excellent.

      Have you considered writing a series for A-Level students as I feel your treatment of the concepts would help so many of them develop a much better understanding and appreciation for the material they will be tested on. Just an idea.

    • Slarty O'Brian profile image

      Ron Hooft 

      8 years ago from Ottawa

      Yes. I am sure it was done. ;) but I do not know the details of how. Was the sensor completely passive? Can we rule out any electromagnetic interference from it? What kind of sensor was it exactly? Have we done the experiment with different types?

      You say the observer observed the results but did we observe it after the fact or as it was happening?

      I also know Feynman said there was no wave particle duality and that in the double split experiment the particle takes all possible paths creating interference with itself which emerges as a wave pattern. But I can not find his ideas on the sensor experiment or wave function collapse, which I know many scientists have doubt actually exists.

      Can you enlighten me on any of these questions? I think it would make a great hub, actually.

    • topquark profile imageAUTHOR


      8 years ago from UK

      I think that's been done (although I'm failing to find the original reference) and the result was that the interference pattern didn't appear when you know what slit the photon goes through - i.e. it acts as a particle not a wave.

      A human observer does observe something when he looks at the results of the experiment as recorded by the sensor. So you could view that as the action that makes the wavefunction collapse. It's like the Schrodinger's cat situation.

      Interpreting quantum physics is baffling (and that's why it's so interesting, right?). The maths works beautifully at predicting outcomes, but it leads to some weird interpretations when you try to think about what's going on physically.

      Thanks for your thought-provoking comments :)

    • Slarty O'Brian profile image

      Ron Hooft 

      8 years ago from Ottawa

      Another interesting hub. What are your ideas on the double slit experiment with a sensor?

      Personally I can't see how we can consider the sensor as an observer. To say that the observer collapses the wave function in this experiment seems like nonsense to me considering no human observer observed anything.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)