ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Spaceships That Never Were

Updated on July 23, 2008

What Might Have Been

Since the inception of the U.S. space program there have been many novel launch vehicles and spaceships that were designed and seriously considered by NASA, but for one reason or another fell by the wayside. Whether they were scrapped due to lack of funds, lack of a perceived need, or simply because they lost out to other programs or vehicles that they were competing against, government archives are full of detailed plans for a fascinating variety of space hardware that was deemed feasible but never built. This article examines some of the more interesting might-have-beens.

Sea Dragon

Sea Dragon was a colossal launch vehicle designed by Aerojet, the company that built the Command/Service Module for the Apollo program. Sea Dragon dwarfs any other launch vehicle that has ever been seriously considered; while the mighty Saturn V could deliver 118 metric tons to low Earth orbit, Sea Dragon was designed for a payload capacity of over 550 metric tons - more than the entire mass of the International Space Station.

Although incredibly ambitious in terms of size and lifting power, Sea Dragon was also designed to be relatively inexpensive and simple to construct. It had only two stages, the first of which was fueled by liquid oxygen and kerosene, and the second with liquid oxygen and hydrogen. Liquid hydrogen and oxygen fuel was to be generated at sea by a support ship (most likely with a nuclear reactor) via electrolysis. Sea Dragon was designed to be built with "shipyard tolerances," making its construction more analogous to the creation of an ocean-going vessel than a high-tech rocket.

Since at 150 meters in height and 23 in diameter the rocket was far too large for any existing launch facility, Aerojet came up with the novel solution of launching from the ocean. Sea Dragon rockets were to be built at costal shipyard facilities. Once completed, Sea Dragon would be towed horizontally to a safe distance from shore and fueled. After fueling, water tanks at the base of the rocket would be flooded, causing the center of mass to shift and tilting the rocket vertically. Although the Sea Dragon concept might sound far-fetched, it was reviewed independently by the TRW Corporation, who issued a report agreeing that it was feasible.

By combining massive lifting power with a relatively simple design that was inexpensive to build and required minimal support facilities, it was estimated that the cost per kg launched into space with Sea Dragon would be 1/4 or less that of the Saturn V. NASA engineers envisioned the construction of truly massive space stations, or launching manned Mars missions with all the necessary hardware in a single payload. Unfortunately Sea Dragon fell victim to budget cuts in the late 1960s, and lack of a perceived need for such massive payloads has caused a general lack of interest in the project ever since.

Sea Dragon schematics from NASA design documents
Sea Dragon schematics from NASA design documents

X-20 Dyna-Soar

The X-20 Dyna-Soar was a U.S. Air Force "space fighter" prototype project contracted to Boeing in the late 1950s and early 60s. Unlike the "capsule" designs that dominated manned space flight at the time, the X-20 was designed with wings so that it could be controlled by a pilot while in the atmosphere and land on conventional runways rather than relying on a parachute recovery system. It was to be launched into orbit on a Titan III booster, but incorporated its own rocket engine for maneuvering while in orbit.

The Air Force pinned its hopes for a manned military space program on the X-20, and planned to use it as a platform for the development of space weapon systems, military reconnaissance, and basic aeronautical research. In addition to potential combat in space, the Air Force envisioned using the X-20 to bomb ground targets. The X-20 would have had many advantages over both conventional fighter aircraft and unmanned ballistic missiles. Since it traveled in orbit, it would be almost impossible for a hostile country to shoot it down with conventional anti-aircraft weapons. It could also be used to attack mobile targets that couldn't be accurately targeted with pre-programmed intercontinental ballistic missiles. It would also have a human in control until the moment the bombs were released, allowing the pilot to make intelligent decisions or change plans in a way that wasn't possible with ballistic missiles. It was hoped that the design would eventually be used as the basis for a larger version of the craft that could be used to cheaply supply space stations.

Although the X-20 was in many ways much more sophisticated than the capsule designs of its time, the program was cancelled in 1963 due to lack of a clear need. The U.S. government was reluctant to simultaneously fund development of two separate manned space vehicles (the other being NASA's Gemini), especially since it seemed that a Gemini-based vehicle could fulfill many of the intended missions of the X-20. Also, many simply didn't believe that the X-20's advantages over more conventional, unmanned missiles or reconnaissance satellites were sufficient to justify the program's cost. The first prototype of the craft was partly assembled when the program was cancelled.

Although the X-20 never flew, the program provided a wealth of information about winged reentry vehicles that later proved useful in the design of the Shuttle orbiter.

A model of the X-20
A model of the X-20

VentureStar

The VentureStar program was an ambitious Lockheed Martin project to build the sort of spaceship that NASA has originally intended the Shuttle to be. It was to be a single-stage-to-orbit craft that had about the same cargo capacity as the Shuttle, but was fully reusable and required minimal maintenance between flights. Although NASA had originally dreamed of a fully reusable craft when designing the Shuttle in to 1970s, it proved impossible to build a fully reusable craft that met NASA's needs with the technology of the time. By the late 1990s Lockheed and NASA felt that advances in aeronautics and materials science should make such a craft possible. Chief among these advances were the development of new lightweight composite materials, a new thermal protection system that would be much safer and easier to maintain than the Shuttle's tile system, and "aerospike" engines that could efficiently operate at any altitude. With a fully reusable craft that didn't require extensive refurbishment between flights, it was estimated that launch costs could be reduced to about 1/10 of those associated with the shuttle.

Because the proposed craft incorporated so many new design elements, it was decided to build a test craft using the new composite materials, thermal protection system, and aerospike engine. Designated the X-33, this technology demonstrator was to be approximately 1/3 the size of the VentureStar.

Although the advanced aerospike engine was successfully tested, problems with the new composite materials cropped up as soon as construction of the craft began. Engineers had trouble making acceptably lightweight fuel tanks out of the composites that were strong enough to withstand the stresses of launch. The program fell behind schedule and over budget, and was cancelled in 2001. At the time of its cancellation, 85% of the prototype craft had been constructed. Over $1.5 billion was spent on the project.

Artist's conception of a VentureStar in orbit.
Artist's conception of a VentureStar in orbit.

Shuttle Buran

No failed spacecraft has ever come as heartbreakingly close to success (but still failed) as the Soviet Buran Space Shuttle. The project was started in 1974 as the Soviet answer to the U.S. Shuttle program, and was intended to serve as U.S.S.R.'s principle scientific and military space vehicle into the 21st century.

Although the Buran looked very similar to the U.S. Shuttle - they both consisted of an orbiter mounted on the side of a large fuel tank, which was itself attached to smaller booster rockets - the overall design was substantially different. Unlike the U.S. Shuttle, which mounts its engines in the body of the orbiter, the Buran's engines were mounted under the central tank. The central rocket, called Energia, was a complete launch vehicle in it own right; the Buran orbiter itself had no major engines, and was essentially cargo that was carried up by the Energia rocket. Since the engines were not integrated into Buran, they could not be recovered and reused. Buran's 30 metric ton payload was also slightly higher than the U.S. Shuttle's 25 ton payload.

The U.S.S.R. conducted a successful test flight of an unmanned Buran prototype in 1988. Buran orbited the Earth twice and landed automatically. The prototype was only partly completed, and lacked a working life support system and cockpit controls

Despite its initial success, Buran was cancelled in 1993. The prototype that orbited the Earth twice in 1988 was destroyed in 2002 when its storage hanger collapsed.

Comments

    0 of 8192 characters used
    Post Comment

    • LiamAnderson profile image

      LiamAnderson 

      8 years ago

      Hi

      Many thanks for the hub. I've always been a 'Space Cadet' myself.

      If you are looking for ideas for 'spaceships that never were' I think you may have missed the grand daddy of them all, Project Orion.

      You can check it out on Google for yourself, the idea was, and still is, absolutely staggering in its ambition. We are talking about Earth launched spacecraft with 10,000 tons of payload!

      I'll not spoil all yours or your readers' fun.

      Look forward to reading your update.

      Best wishes

      Liam

    • Alexander Mark profile image

      Alexander Silvius 

      8 years ago from Portland, Oregon

      Great hub, I loved it. I am curious about the VentureStar, I didn't know what happened to the design depicted in the picture, now I know what it is and what it's called. I am surprised that such a vehicle could not be constructed today, and it is a real shame that it was almost completed and so much money spent on it. Buran suffered a sad fate as well, and yet I will always wonder if the Russians didn't steal some design plans from the Americans.

      So here's an idea: why not build an actual spaceplane with jet engines to get it as high as possible and then ignite the rockets? It should be able to save a lot of money on launch equipment and fuel costs. If the jet engines could not be counted on to reliably restart after reentry, then perhaps they could be folded into the fuselage like landing gear, except completely sealed from the vacuum. What do you think?

      Thanks for the lesson on these unheard of spacecraft. The X-20 in particular got me thinking - what if? If we had space wars there would no doubt have been lasers and such, and our present would probably look like Battlestar Galactica.

    • profile imageAUTHOR

      sciguy 

      10 years ago

      Thanks, prems4u. I would like to add more, but there are only so many interesting failed spacecraft designs out there. If anyone has any others that they would like to see added, let me know and I'll see if I can dig up information on them.

    • prems4u profile image

      prems4u 

      10 years ago from KERALA Cochin

      Very informative hub..thumb up for this hub.

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)