ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

The Cosmos and the Development of Life

Updated on January 14, 2015

Foreward

What I present here is the "accepted" theories about the formation of the solar system and Earth, by way of the scientific community. It is not my intention to disregard or diminish in any way the other theories on the subject, including the Creator theory. As always, I'm happy to discuss those theories further in the comment section, or perhaps in another hub entirely.

X-Ray image of a supernova remnant, captured by Kepler.
X-Ray image of a supernova remnant, captured by Kepler. | Source

Exothermic vs. Endothermic Reactions in Stars

As elements are fused in stars, they logically increase in mass. This increase makes the continued fusion process more and more energy-consumptive, and this energy is what prevents the collapse that causes a supernova. These earlier reactions are considered exothermic, because more energy is created than is used in the reaction. Once the Iron-56 is formed, the energy cost of fusing the particles is greater than the energy produced in the reaction. These are endothermic reactions, because they absorb heat rather than produce it.

Supernova: We are stardust

You health nuts out there, name a few of the nutrients in foods and supplements that we need to live. I'll wait.

Iron is the big one, and not just for nutritional purposes. All of the iron in the Earth, whether it's in your multivitamin or your frying pan, was created in the heart of a star. A good chunk of the periodic table owes it's existence to the nuclear fusion that powers the sun and it's brethren across the universe, in fact.

Starting with hydrogen, a star is powered by fusing atoms together. When the two particles are fused, the result is the creation of helium and a bit of lost matter in the form of energy, which powers the star. When the hydrogen supply runs short, the helium is then fused with hydrogen or other helium to form lithium and beryllium. The beryllium atoms in turn can be used as part of the triple-alpha process to form carbon. This is a good time to remember that we are carbon-based lifeforms, by the way.

This process continues, fusing heavier and heavier elements and allowing the star to continue to burn. However, the moment iron is formed, the star is in it's death throes. Iron is the last element which produces a positive return of energy when fused, so every subsequent reaction causes the star to lose energy, and as the fuel is gradually converted to a non-fusible element the resultant energy production is reduced until the core begins to collapse, creating conditions that allow for carbon fusion, leading to the production of iron. The end result of this process is a star which can no longer produce enough energy to maintain equilibrium with it's own gravitational force, the outer layers of the star collapse. When this shell reaches the core, a shockwave results and sufficient temperatures and pressures are reached to create even heavier elements in the subsequent explosion.

Depiction of the modern solar system
Depiction of the modern solar system | Source

What Happened to Mars?

Formation of the Solar System

Our little solar system is estimated to be about 4.6 billion years old, born when matter in a large molecular cloud collapsed under the force of gravity. Most of that matter coalesced in the the center to form our sun, and the remainder began to swirl around and flatten into a proto-planetary disc. Within this disc, planets, moons, asteroids, and most of what resides in the borders of the system formed by accretion, which is to say that they began as dust and, through collision, gradually into larger and larger objects. As these objects orbited the newly-created sun, they continued to collide and rebound, gradually forming larger planetary bodies and their satellites.

The temperatures in the inner solar system were too high for low melting-point molecules to condense, so the only available elements for the formation of the inner planets were silicates and metals. These terrestrial planets, since they were composed of rarer elements, could not grow to the sizes we see in the gas giants beyond Mars which are made up of lighter and more common elements.

Gradually, the remnants of the molecular dust that filled the solar system was collected by the forming bodies or blown away by the solar wind, forming the outermost planets and bodies that orbit our star and casting the remainder into interstellar space.

Composition of the Earth's Crust

Element
Percentage
Oxygen
47%
Silicon
27%
Aluminum
8%
Iron
5%
Calcium
4%

Other elements exist in the crust in smaller quantities. Heavier elements like iron and nickel sink into the mantle and core.

Artist depiction of the Theia Collision event.
Artist depiction of the Theia Collision event. | Source

How the Moon Formed: The Theia Collision

The current leading hypothesis on the formation of our moon is that sometime about 4.5 billion years ago a large object collided with Earth. During the period a large number of planetary bodies would have formed, which would have included not only the planets we know today but many more. One such body has been named Theia, after the Greek Titan and mother of the Moon Goddess Selene.

Though it is theorized that such collisions happened frequently in the early history of Earth, this one is special in it's conditions. Theia is thought to have been roughly the size of Mars, about 1/3 the size of Earth, and to have struck the infant planet off-center. The result was that most of Theia was absorbed by the larger Earth, but the remnants of the collision scattered into orbit and accreted into what we know today as the Moon.

This collision may also be responsible for the tilt in the Earths axis. This tilt results in seasons, which are considered to be one of the many essential ingredients for life. Additional effects of having our Moon are tidal pull and orbital stability, both of which are critical in the formation of life as we know it today.

The Late Heavy Bombardment

During this period, it is thought that a large number of objects were drawn in from the asteroid belts by orbital shift in the gas giants, hurling these bodies into the inner solar system causing a massive number of collisions that would have brought additional and more varied materials to the earth. This theory is evidenced by a large number of dated impact craters on the other terrestrial planets and remnants of such on Earth.

It is interesting to note that the beginnings of life on Earth are dated to just after the end of this period, roughly 3.8 billion years ago. This fact has lead to a controversial theory that life on Earth was carried here from space, though this hypothesis is not widely accepted in the scientific community.

The Earth as seen from Apollo 17
The Earth as seen from Apollo 17

Author's Note:

The series of events that lead to the world we live in is full of pure luck. Were it not for these examples and scores of others, life would not exist as we know it, and I think it's worth taking a moment to acknowledge the amazingly unlikely confluence of coincidences that resulted in the existence of life that is capable of contemplating it's own nature.

However far we advance as a society and seek to master our environment, we are a product of luck on an inconceivable scale, and that, I believe, is something we should all be grateful for.

I hope you enjoyed reading, and as always feel free to track me down on Facebook, or visit my home page for more information on the many, many things that made the world what it is today.

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)