ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

The Structure, Function and Usefulness (to Humans) of Plant Cell Walls

Updated on September 30, 2014

Figure 5 Cell Wall Layers

Click thumbnail to view full-size

Figure 6 Components of the Cell Wall

Click thumbnail to view full-size

The Structure of Plant Cell Walls

The plant cell wall consists of three layers, as shown by figure five.

Middle Lamella

The first layer is that of the middle lamella [Figure six]. It is composed of pectic compounds, pectic acid and protein. The middle lamella makes up the outer wall of the cell and is shared by adjacent cells.

Pectic acid is a polymer of roughly one hundred galacturonic acid molecules. It is very hydrophilic and soluble as well as being able to easily form bridges with Ca++ and Mg++ of insoluble gels.

Pectin is a polymer of roughly two hundred galacturonic acid molecules. It is often found with acidic sugars, for example galactose and arabinose. Although pectin is less hydrated then pectic acid, it is the most soluble cell wall polysaccharide and can be extracted with hot water (Alberts, 2002).

Primary Cell Wall

Another layer is that of the primary cell walls, which normally develops between two daughter cells in early telophase [Figure six]. They are composed of a rigid skeleton of cellulose microfibrils, embedded in a gel-like matrix of pectic compounds (e.g. pectic acid), hemicellulose and glycoproteins (Scheller et al., 2010).

Cellulose is a linear chain of one thousand to ten thousand beta D covalently bonded glucose residues (Strnad, 2000). It is the key component of primary (with six thousand glucose units) and secondary cell walls (with thirteen-sixteen thousand units) and is, according to Matthews et al. (1999), “one of the most abundant organic compounds in the biosphere”. These chains combine to form microfibrils with a crystalline structure. Zaikov (2004) stated that “it is the H-bonding that forms the basis for the high tensile strength of cellulose”.

Hemicellulose is a group of polysaccharides with short highly-branched chains of sugar which are tightly bound to the cell wall, e.g. xylans and xyloglucans (Zaikov, 2004).

Scheller et al. (2010), describes the function of hemicellulose to be “their contribution to strengthening the cell wall by interaction with cellulose and, in some walls, with lignin”.

Secondary Cell Wall

There are also the secondary cell walls that develop through the progressive deposition of cellulose fibrils, after cell enlargement is finished [Figure five]. They are very rigid and often layered. They are composed of cellulose, hemicellulose and lignin (Scheller et al., 2010).

Lignin is a complex mixture of different types of phenyl propane units which is often highly branched. It is the basic unit of xylem and wood, since it forms a stable network that gives the cell tension-proof flexibility (through covalent bonding) (Lybeer, 2006).

Figure 2 Diagram of a Plant Cell

Click thumbnail to view full-size

The Function of Plant Cell Walls

The functions of the cell wall are: to lead the cells stability, determine its shape, influence its development, counterbalance the osmotic pressure and protect the cell against pathogens.

Cell Stability

Plant cell walls are important for providing mechanical tensile strength for the cell. Scheller et al. (2010), says hemicellulose is not the only reason for this stability but it is also due to lignin. Lignin was one of the prerequisites of the evolution of large upright growing terrestrial plants, because it works as a ‘backbone’ (Lybeer, 2006). However, it is not the presence of these molecules that cause the rigidity but it is the effect of hydraulic turgor pressure, which is why plants wilt when they have a reduction in water.

Shape Determination and its Influence of Development

The cell wall controls the rate and direction of cell growth, which eventually controls the plant’s morphology (morphogenesis). For example, in comparison to animal cells, the cells of plants are of a regular size and shape (animal cells vary greatly) [Figure two]. The process is that cells control the orientation of microfibril deposits in the cell wall, which alters the direction of expansion due to turgor pressure (Alberts et al, 2002).

Counterbalancing Osmotic Pressure

Plant cell walls prevent the over-expansion of the cell, which stops the cell membrane bursting in a hypotonic medium (osmotic lysis). Although it could be said the plant cell wall acts as a barrier to water in suberized cells and as a barrier to large molecules (which could be toxic) from entering the cell, it must also allow the passage of water (and ions) to and from the cell to ensure the plant cell continues to live. However, in some cells e.g. those that have been lignified, this is no longer the case and the cell dies, but it still helps with the cell by providing strength (Alberts, 2002).

Protection from Pathogen

The cell wall is able to act as a physical barrier to pathogens to prevent them from harming the plant so they can obtain the nutrients within. Underwood (2012) described this as “the cell wall is actively remodelled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes”. Underwood is referring to the reinforcement of the cell wall done by papillae (cell wall appositions), which is done as soon as the plant identifies possibly harmful bacteria or fungi (Underwood, 2012).

The Usefulness of Plant Cell Walls to Humans

Plant cell walls are useful for food production, clothing, paper, fuel and medicine in humans.

The components of the cell walls are useful for human health, both as medication and as a vital part of our diets. Pectin from cell walls is a soluble dietary fibre that binds to cholesterol to slow down glucose absorption in humans. It also reduces blood cholesterol because short-chain fatty acids are used up to break down the pectin. Cellulose and hemicellulose are also important as dietary fibre because the human digestive system cannot break them down, since it is lacking in cellulase (UXL Encyclopaedia of Science, 2002). Pharmaceutical applications of lignin include the purification of antiseptic and antibiotic drug because it can be used to remove hemo- and entero- toxins and lipid-soluble metabolites (Meike, 2012). Cellulose applications include: oxidation, microbial cellulose synthesis, incorporation of metallic nanoparticles, and for coating quaternary ammonium compounds (Strnad, 2000).

Cell wall molecules are also important in manufacture. The fibres of cellulose (and sometimes a little lignin) are twisted and woven to make cotton, hemp, flax and jute (UXL Encyclopaedia of Science, 2002). Cotton is a soft fluffy cellulose fibre that makes soft breathable textile e.g. towels, jeans (Strnad, 2000). Jute is a lingo-cellulosic fibre which is used for making hard-wearing cloth e.g. curtains, sacks. Also, paper is manufactured from cellulose, when it is reduced to a pulp, which is then washed, bleached, dried, pressed and smoothed. After the water has been sieved off, the remaining pulp is pressed, and then allowed to dry to yield a very thin sheet of paper. All plants are able to be used however, the most frequently used today are the more fast-growing varieties e.g. pine (UXL Encyclopaedia of Science, 2002).

Heavily lignified woods are used for fuel, since they burn more efficiently (The Forestry Commission, 2012). Pauly et al. (2007), describes plant cell walls as being “the most abundant renewable resource on this planet”. This is because they can be efficiently degraded into fermentable sugars. However, this is research in-progress and does not yet occur because the polysaccharide biosynthetic machinery would have to be altered first.

References

Alberts, B. et al. (2002), Molecular Biology of the Cell [4th edition], Garland Science.

Boerjan, W. (2010), ‘Initial Field Test Results GM Poplars: Bioethanol Yield Almost Doubled’ [online journal], Available at http://www.vib.be/en/news/Pages/Initial-field-test-results-GM-poplars-bioethanol-yield-almost-doubled.aspx, (Accessed: 24/11/12).

Cossalter, C. et al. (2003), Fast-Wood Forestry: Myths and Realities, Indonesia Printer, Available at http://www.cifor.org/publications/pdf_files/Books/ForestPerspective.pdf, (Accessed: 24/11/12).

‘Frontier in Plant Physiology’ (page 1) [online journal], Available at http://www.frontiersin.org/Plant_Physiology/10.3389/fpls.2012.00085/abstract, (Accessed: 24/11/12).

Guardian, ‘The GM Tree Plantation Bred to Satisfy the World’s Energy Needs’, Available at http://environment/2012/nov/15/gm-trees-bred-world-energy, (Accessed: 24/11/12).

Lybeer, B. (2006), ‘Lignification and Cell Wall Thickening in Nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra’, Annuals of Botany, Volume 97 (pages 529-539), [online journal], Available at http://aob.oxfordjournals.org/content/97/4/529.full.pdf, (Accessed: 20/11/12).

Matthews, C. et al. (1999), Biochemistry, [3rd edition], Benjamin Cummings.

Meike (2012), ‘Inexpensive, Environmentally Friendly and High Permeable Lignin-Based Ion Exchangers’, Industrial Partnership Office, Available at https://ipo.llnl.gov/?q=technologies-lignin_based_ion_exchangers, (Accessed: 24/11/12).

Pauly et al. (2007), ‘Cell Wall Carbohydrates and their Modification as a Resource

for Biofuels’, The Plant Journal, Volume 54 (page 1) [online journal], Available at http://public.wsu.edu/~lange-m/Documnets/Teaching2011/Pauly2008.pdf, (Accessed: 24/11/12).

Pollack, A. (2007), ‘Through Genetics, Tapping a Tree’s Potential as a Source of Energy’, The New York Times, Available at http://www.nytimes.com/2007/11/20/science/20tree.html?pagewanted=all, (Accessed: 24/11/12).

Scheller H., Ulvskov, P. (2010), ‘Hemicelluloses, Annual Review of Plant Biology’, Volume 61 (page 1), [online journal], Available at http://www.annualreviews.org/doi/abs/10.1146/annurev-arplant-042809-112315, (Accessed: 22/11/12).

Strnad (2000), ‘Cellulose Fibres Functionalised by Chitosan: Characterization and Application’ [online journal], Available at http://cdn.intechopen.com/pdfs/12146/InTech-Cellulose_fibres_funcionalised_by_chitosan_characterization_and_application.pdf, (Accessed: 24/11/12).

The Forestry Commission (2012), ‘Replace Other Materials with Wood’, Available at http://www.forestry.gov.uk/forestry/INFD-7M8MXV, (Accessed: 22/11/12).

Underwood, W. (2012), The Plant Cell Wall: A Dynamic Barrier Against Pathogen Invasion, UXL Encyclopaedia of Science (2002), (Second edition), The Gale Group Inc.

Vidal, J. (2012), The GM Tree Plantations Bred to Satisfy the World's Energy Needs.

Zaikov, G. et al. (2004), Polymer Analysis, Degradation and Stabilization (Pages 97-100), Nova Science Publishers Inc.

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)