ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Symmetry in Physics for Dummies Like Me

Updated on February 14, 2016

What, exactly, is symmetry? Paraphrasing Richard Feynman (one of the absolute best popularizers of science of all time), who puts it pretty simply: you can do something to a thing, and it looks the same. Wikipedia puts it a bit more formally:

"A physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation."

Symmetry across the ages has always fascinated mankind, and it has fascinated me ever since I was old enough to put coherent thoughts together. On the surface, symmetry seems pretty simple. A human face has left-right symmetry, and a circle has radial symmetry. But there are more ways for things to be symmetric than the merely visual aspect, and that's where things get more interesting for me. Let's take a look.


Taj Mahal, a beautiful example of left-right symmetry

Source

Familiar symmetry

As alluded above, there are several types of symmetry we're already intimately familiar with, or "wired" to experience. The most common form is left-right symmetry, as is evident in the human body (although it's not 100% perfect; your heart is on the left side of your chest, your left arm is slightly different from your right arm, and so on; but it's certainly very, very similar).

Another very intuitive concept is top-bottom, or up-down symmetry. A flying saucer has up-down symmetry, or a figure 8. You can think of top-bottom symmetry as left-right symmetry turned sideways.

Mirror symmetry can encompass both top-bottom and left-right symmetry. The human face is mirror-symmetric along the y axis (just another way of saying it's left-right symmetrical), and there's another form of left-right and top-bottom symmetry that doesn't involve mirror symmetry- think of it as "rubber stamp" symmetry if you'd like, and just imagine an exact duplicate on the left side and the right side.

Radial symmetry is intimately familiar to us. You can imagine a circle in two dimensions, or a sphere in three dimensions, for the perfect radially symmetric visual device. Some shapes have discrete symmetry, like a square, where it depends on how you look at it from the center. A circle is symmetric no matter how many degrees you go out from the center; a square is not.

Source

Less familiar, but easily visualized by the layman

The above forms of symmetry are spot on, just perfect. But there's an "almost symmetry" that's often found in nature. One such example of this "almost symmetry" is the mass of the neutron and the proton, which is now far better understood than it was, say, in the 1950s (before the quark model). Why were the neutron and proton so very close in mass, when the electron was 1836 times smaller than the proton, but the neutron is only 1.001 times bigger than the proton.

While we're talking about protons and neutrons, there's another type of symmetry we can pretty easily understand. Protons are attracted to other protons via the strong nuclear force in exactly the same way that protons are attracted to neutrons. This observation was certainly significant in understanding what was going on within the nucleus of the atom, but what we need to understand is this kind of "force symmetry" the two different interactions have (proton-proton and proton-neutron). Although the proton is positively charged and the neutron is, of course, neutral, the two particles share the same strong force of attraction.

More abstract symmetry

During the discoveries in the late 1950s and early 1960s at various particle accelerators (especially Brookhaven), physicists noticed that there were other similar "families" of particles, where it didn't matter if you switched out one for the other in terms of the attractive nuclear forces felt by these particles. These families can be visualized as rows in a grid, with the proton and neutron being at the top of the grid. A particle called the "cascade" particle (as described by Richard Feynman in the associated video) fits two rows beneath the proton and neutron, because it goes through two steps to decay into a proton or neutron (the step in between is the sigma). Given that these particular particles decayed in the steps as they did, could this particular method of decay be used to predict other particles in other grids? It could, and that is what the "omega minus" particle discovery was all about, as Feynman so eloquently explains at the beginning of the BBC special.

Richard Feynman

What's the use in symmetry?

Sure, symmetry is aesthetically beautiful. The human eye is naturally attracted to the symmetry of a face, as is evidenced in art throughout the ages. We're attracted to symmetry for genetic reasons, too. However, as is evidenced by the discovery of the "omega minus" particle, there's a great deal more scientific use from the study of symmetry as well, particularly abstract symmetries. One such extrapolation lies in a symmetry between the forces of nature. Photons are the quanta, or individual force-carrying particles, of the electromagnetic force. In other words, magnetism and electricity work because of a photon flying back and forth between two objects that are attracted or repelled. With the weak force, it was discovered that W and Z bosons cause the force to work, or mediate it. The strong force, likewise, has gluons (physicists are such nerds!). It is hypothesized that gravity works via gravitons, although there is no evidence yet to support this concept.

It's impossible to say what our next big discovery based on symmetry will be, but it's a safe bet that we will, indeed, make discoveries based on the principles of symmetry. Me, I'd just like to continue to think about this stuff as I drift off to sleep!

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)