ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

What Is Nuclear Fusion?

Updated on September 10, 2010

Why Nuclear Fusion?

Nuclear fission has already been harnessed by mankind to generate power on Earth for many decades. Since the early 1950s scientists all over the world have been working to control nuclear fusion. If nuclear fusion is successfully obtained, energy from this reaction could replace basically every other source of energy there is. The world could be powered by cheap nuclear fuel with no radioactive waste. Nuclear fusion is the exact opposite of fission and is also much more powerful.

Nuclear Fusion: the joining of 2 nuclei with small masses to form a larger and more massive nuclei at the same time giving off huge amounts of energy.

The Deuterium-Tritium Fusion

Supposedly the easiest fusion reaction to achieve involves the isotopes of hydrogen and lithium which are deuterium and tritium.

Deuterium: can be extracted from all forms of water.

Tritium: doesn’t occur naturally but can be extracted from Lithium, which is abundant in Earth’s crust.

In the process of fusion these 2 isotopes must be at a high density and must also be heated up at extremely high temperatures for a time long enough so that the reaction can take place. For the deuterium-tritium fusion this time is 1 second. At such temperatures the fuel is no long an ordinary state of matter but instead it’s a plasma. The fusion of these isotopes would produce helium and energy.

Some Advantages of Nuclear Fusion

  • A vast, new source of energy.
  • Fuels are plentiful.
  • It’s naturally safe because any malfunction would result in a rapid shutdown.
  • No atmospheric pollution that would lead to acid rain or the “greenhouse” effect.
  • The radioactivity of the reactor structure caused by neutrons, decays rapidly and can be reduced by careful selection of low activation materials.



Fusion’s Obstacles

Nuclear fusion has proven very difficult to control. Some examples of fusion’s difficulties are in the deuterium-tritium fusion.

  • In this kind of fusion the isotopes used have a strong positive charge making them hard to bring together since charges that are alike repel each other.
  • The only way to bring these isotopes together is by heating them up at millions of degrees Celsius which would require a lot of energy from other sources.
  • When the heated isotopes become plasma there would be no material that could withstand it’s temperature without melting or exploding.

Tokamak

The Tokamak fusion reactor was first developed in Russia. This reactor uses a combination of 2  magnetic fields to control and heat the plasma in looping paths which do not touch the wall of the container. Besides being heated by the magnetic fields, the plasma is also heated by intense beams of neutral atoms that are injected into the plasma. In 1993 the Tokomak produced an output of 5.6 million watts in a controlled fusion reaction. Even though more power than this was required as an input to the reactor this was a great achievement in the study of fusion.

Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory

Shiva

Shiva is a laser fusion device at the Lawrence Livermore Laboratories. In the Shiva device, 20 lasers are focused to a precise location in a target chamber. This multi-laser device which was named after the multi-armed Hindu god seeks to initiate laser fusion in small microballoon pellets of a deuterium-tritium gas mixture by zapping them with such a high energy density that they will fuse before they have time to move away from each other. One of these pellets is supposed to have the same energy as a barrel of oil. This device was put into operation in 1978.

Nova

Nova is a also a laser fusion device at the Lawrence Livermore Laboratories. This device uses lasers 10 times more powerful than the Shiva laser fusion device and will attempt to reach the breakeven point for fusion. Nova will use 10 lasers that are focused on a 1 millimeter target area to zap it with 100,000 joules of energy into the target in a nanosecond. In 1994 , Nova reached the fusion criterion  but at a temperature too low for fusion to occur.

The Hydrogen Bomb

The hydrogen bomb is an example of fusion. In a hydrogen bomb the explosion of an atomic bomb provides the temperature and density needed so fusion can occur. This fusion results in a sudden release of a large amount of energy that creates an ever bigger and more powerful explosion.

Stars

Nuclear fusion is the mechanism which powers stars. Fusion at a star’s core is reached when the density and temperatures are high enough. There are several different fusion cycles throughout a star’s life. The first fusion cycle is the fusion of hydrogen into helium. This is the stage the sun is in at the present time. The energy created by this process radiates of into space in the form of heat and light.

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)