ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

What is an Intersection of Two Sets?

Updated on June 7, 2013

Introduction

A set is zero or more items grouped arbitrarily. Typically a particular set contains items with some relationship outside the grouping, but that is not a requirement. We may use the word collection as well to describe such an accumulation of things.

For example, all the people who voted in the 2012 United States Presidential Election for Barack Hussein Obama may be considered to be a set. This example is for conceptual purposes only: we cannot hope to identify the particular people belonging to the set nor would we be able to gather them all together into a manageable group.

A more tenable example would be all the spoons in your silverware drawer in your kitchen. This set is precise, countable, and small enough to be manageable. We are not going to debate the definition of 'spoon.'

Some set notation

When we describe the contents of a set, we use set notation. One style of such symbology uses curly brackets (also called curly braces) to delimit the beginning and end of the list of items in the set. We use commas to separate the individual items from each other.

For example:

{1,2,3,4}

is a set of 4 numbers.

We can also add non-numeric items to our set:

{1,2,3,4, "apple", "peach"}.

Delimiting individual set items with quotation marks is not necessary in the preceding example, but non-numeric items with embedded commas would become problematic. For example:

{1,2,3,4,apple,peach}

could be a set with either 5 or 6 items. The last item could be apple,peach or just peach. For this reason we endorse the use of quotes for all non-numeric list items whenever possible.


Referring to sets

In order to write simple expressions in any branch of mathematics, we create placeholders to represent our sets. Consider the set of fruits defined here:

{"banana", "grape", "plum", "strawberry", "tomato"}

instead of listing all the elements whenever we want to refer to the set, we can define a simple placeholder, or variable, to represent the entire set. This variable is usually a capital letter. We might write:

F = {"banana", "grape", "plum", "strawberry", "tomato"}.

Where the F is the variable. We chose F because the list contains fruits. You may choose your own letters to meet your own documentation requirements.

Sets have operations

Operations can be performed on sets. These operations are typically mathematical or logical but text-based operations are also possible. A small collection of operations common to all sets can be discussed.

  • Count
  • Enumerate
  • Add
  • Remove

We would want to perform these operations on almost any set. The particular content of the set doesn't matter: this collection of operations is general enough to apply almost all the time.

Sets that cannot be enumerated

Some sets are so large as to be impossible to enumerate. We can still define the contents of such a set in a qualitative manner rather than a quantitative notation. For example:


A = {All the people who have FaceBook accounts}

Obviously this set changes almost constantly, but conceptually we understand what it represents. The Letter A will be used as our variable to represent the set in equations and formulas.

Intersection

Two sets intersect when each set has one or more items that are also in the other set. We use the ∩ symbol to represent the intersection operation on two sets.

For example:

AB

is the intersection of set A and set B. We don't know what is in sets A and B, but if we did we could calculate the intersection.

Here's a more practical example:

Y = {1,2,3,4}

X = {2,4,6,8}

The intersection of sets A and B can be written as X ∩ Y = {2,4}.

Here's another notation

Not all of us are numerically-minded. Many folks have an easier time visualizing diagrams or drawings rather than numbers and variables. To that end, a mathematician called John Venn devised a style of representing set intersections that is named after him to this day. The Venn Diagram can be used to illustrate the intersections of small sets of sets. Refer to the example below.

A Venn Diagram of two intersecting sets. These two sets will intersect in the real world.
A Venn Diagram of two intersecting sets. These two sets will intersect in the real world.

Limitations of the Venn Diagram

A typical Venn Diagram is drawn in two dimensions, therefore limiting its effectiveness for sets counts of any appreciable size. We can deploy Venn Diagrams to illustrate the intersection of two sets and sometimes three, but the illustration will become unwieldy and unclear rather quickly.

What if two sets do not intersect?

We can always write

AB

to illustrate the intention to calculate the intersection between sets A and B. However, there may not be any intersection: no items in A may be common to B. In that case, we use a special notation called the empty set to illustrate our non-intersection. We write:

AB = {}.


An empty set is described simply as an opening curly brace immediately followed by a closing curly brace. Any spaces or blanks enclosed within the braces are ignored, so we can write

AB = { }

without getting into trouble.

Two sets that cannot intersect, written in Venn Diagram notation.
Two sets that cannot intersect, written in Venn Diagram notation.

Google prefers a poll

I am a now set expert

See results
working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)