ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

studying the sun in the solar system

Updated on June 19, 2012

The 19th-century French astron- omer Jules Janssen risked his life to see an eclipse of the Sun. From the Earth, the Sun's outer atmosphere. known as the corona, can be seen well only during a total eclipse. Janssen knew that such an eclipse was due to pass across Oran in Algeria during 1870. But he was trapped in Paris by the besieging German army at the height of the Franco-Prussian War.

Determined to get to Oran, he made a daring escape from the city by balloon, floating across the German lines and then hurrying south. In the end. however. his journey was wasted. The eclipse happened on schedule. and Janssen was in the perfect position to see it. Unfortunately. the sky was solidly overcast-and he saw nothing at all.

The Sun, like most other stars. broadcasts radio waves as well as light. The Sun's transmissions were discovered in 1942 during the Second World War by a team of British scientists under John Hey. When the scientists first picked up the crackling noise on their receivers they did not realise that the interference was from the Sun: they put it down to deliberate jamming by the Germans.

Towards the end of its life,some 5000 million years from now, the Sun will swell up into a red giant which will engulf the planets, including Earth, as far out as Mars. Most of its bulk will then be a glowing ball of gas containing about half of its total mass. The remaining half will be a much denser and much smaller core. If the red giant Sun were the size of an ordinary living room, its energy-generating core would, on the same scale, be no larger than the full stop at the end of this sentence.

The first supernova (exploding star) to be discovered outside our own Galaxy was spotted in August I885-during a party in Hungary. The supernova was seen through a small telescope which the party's hostess, a Hungarian named Baroness de Podmaniczky, set up on her lawn and turned towards an object then known as the Andromeda Nebula (now known to be an external galaxy).

The baroness - one of several independent observers to discover the supernova within a few days of each other - noted that there seemed to be a 'little star' in the nebula and this was confirmed by one of her guests, a professional astronomer called de Kovesligethy. Some 2 million light years from the Earth, (the official designation of the supernova) was, at its peak, at least 15 million times more luminous than the Sun. Then it faded again. In apparent mag- nitude, however (its brilliance as it appeared in the sky), it remains the brightest supernova ever to have been seen in an outer galaxy.

Astronomers in the world's oddest observatory cannot see the sky at all, and do not need to. The observatory is about I600m (1 mile) underground in an old mine in the western United States, and its 'telescope' consists only of a huge tank of cleaning fluid. Yet it can 'see' into the core of the Sun better than any visual observatory in existence.

The reason has to do with a sub-atomic particle called a neutrino. Neutrinos have no electrical charge and virtually no mass. As a result. they can pass through most forms of matter unchecked - a property which makes them extremely difficult to detect. Most ofthe radiation generated at the Sun's core is absorbed by the Sun's surface layers. Neutrinos, however, once created, are unaffected by the outer layers and so provide a direct indication of the activity in the core.

Neutrinos are also largely unaffected by the Earth, so most pass straight through without even slowing down. But they can sometimes react with atoms of chlorine-hence the tank of cleaning fluid which is rich in chlorine. By monitoring the reactions in the tank, scientists can gauge the number of neutrinos reaching the Earth, and thus the number being produced by the Sun. The tank has to be so far under- ground in order to block cosmic rays which would otherwise swamp the neutrinos' effects.

The smallest stars known are neutron stars, so called because their electrons and protons have been crushed together to form the sub-atomic particles called neutrons. A typical neutron star is only about 25km (15 miles) across, yet it may contain as much mass as a star the size of the Sun.

As a result, a pinhead of neutron star material would weigh about 1 million tonnes-as much as two of the world's largest supertanker ships put together. Neutron stars are believed to be the remnants of large stars which have erupted as supernovae at the end of their lives.

Their intense gravity has the effect of concentrating the powerful radiation they give off into beams. Since many neutron stars also spin, the radiation sweeps across space like the beam from a lighthouse. As the beams flash past Earth, the star seems to pulse with energy-which is why rotating neutron stars are known as pulsars.

Comments

    0 of 8192 characters used
    Post Comment

    No comments yet.

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)