ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

The Increasing Complexity of Door Hardware

Updated on February 22, 2020
Tom Rubenoff profile image

Tom has 40+ years in the door hardware industry: 25+ years in hardware distribution, and 17+ years as a commercial locksmith.


We demand more of our door hardware these days. As always, we want it to keep the bad guys out and let the good guys in or out, but now we may also want it to keep Alzheimer’s patients in but let their caregivers pass through freely; or open a door automatically for some but not for others; or we may want it to inhibit the progress of smoke and fire while letting those fleeing the flames escape without having to think about it. Some door hardware must resist hurricane winds while other hardware must provide electronic access and be explosion proof.

As a result, choosing door hardware is more of a science than it once was. Those who choose door hardware without prior training may need to consult more than one authority as they make their choices. Those who recommend door hardware must be prepared to research outside their normal sphere of expertise in order to ensure security as well as fire and life safety while providing the functionality that users seek.

Intermatic T101 Electromechanical Timer
Intermatic T101 Electromechanical Timer | Source

Mechanical, Electromechanical and/or Electronic

The mechanical function of a locking device – without the further complication of electricity - can be complex all by itself. Combinations of latch, dead latch and bolt, key cylinders outside and/or inside, thumb turns, toggles and occupancy indicators combine in the making of hundreds of functions, each designed for a specific purpose. There are privacy and hotel locks that allow a person to lock themselves inside a room and have an indicator outside that reads, “Do Not Disturb” or “Occupied”, but also allow entrance by special key in an emergency. There are locks that unlock themselves when you shut the door and others that are always locked from one or even both sides. There are locks that are never locked and locks that can be locked three different ways. Some locks lock the outside handle using a key from the inside and some use a key from the outside, and still others use a key from either side.

But mechanical functions are designed to behave the same way every time, given the same input, and they have no memory. Also, mechanical locks can only be given input in person. To make locking systems behave differently in different situations, keep an automatic record of use or to control them remotely, electricity is required.

The first step away from purely mechanical locking is electrification: electric strikes, electrified cylindrical or mortise locks and electric latch retraction or electric trim for exit devices. Electrification allows the user to control the device remotely – for example, a receptionist at a desk can press a button fifty feet away and admit a visitor.

The next step away from purely mechanical locking is commonly called “time zones”: that is, controlling the behavior of a lock electrically though different time periods during the day, week, month or year. This can be done electromechanically with a time switch such as the Intermatic T101, or it can be done electronically using a timer like the Altronix P724A. Typically the Intermatic is used to turn something on at a certain time and off at a certain time, once each day. The Altronix PT724A, however, can lock the door at 9am on Monday, 8am on Tuesday and Wednesday, 9am on Thursday and Friday, 10am on Saturday, and not at all on Sunday, New Years Day, Memorial Day, July Fourth, Labor Day, Thanksgiving or Christmas, and it can automatically adjust itself for daylight saving time.

Altronix PT724A Timer Module
Altronix PT724A Timer Module | Source

Levels of Automation

Sometimes the user's needs require different levels of automation.

The ambulance entrance to a hospital emergency room, for example, is usually equipped with power operators to open the door. If security is an issue, these doors may be controlled remotely by a security guard at a station with a hardwired switch, or by the ambulance drivers themselves, using a wireless remote much like those used to open garage doors. At the same time, these same power operators may need to have a "push and go" feature in case of emergency, so that injured, sick or disabled people in the emergency room can get out. In addition, the same entrance may be used by employees or visitors who do not need a power operator to open the door for them. Employees would use an access control system to unlock an electric locking device and would simply pull the door open.

For hardware, besides hinges, I might suggest something like:

  • Microprocessor controlled electric/hydraulic automatic double door opener with radio receiver, remote hand-held transmitter-actuators, presence sensors and hardwired actuators
  • A delayed egress concealed vertical rod exit only push bar exit device
  • A delayed egress mortise exit device with electric mortise body, open back strike and lever exterior trim. (There may or may not be a key cylinder in the trim.)
  • Power supply/controller for delayed egress devices with fire alarm interface and security interlock relay board
  • Proximity reader, perhaps utilizing software on the hospital network and Power Over Ethernet

The levels of function I have just outlined on this pair of doors, from simple to complex, are:

  • A mechanical locking system
  • An electric release system
  • An electromechanical door opening system
  • Microprocessor control with timer and fire alarm interface
  • Software

Basically, the system would work like this:

Case 1: When an ambulance backs up to the doors, the EMT activates the doors using their remote. The presence sensor in the opening prevents the doors from closing until it senses the opening is clear.

Case 2: A hospital employee places his proximity card credential near the proximity reader. The electric mortise lock delayed egress exit device is released and the employee turns the lever and enters. The door closes hydraulically behind him.

Case 3: An unauthorized person attempts to exit. They press on one of the exit devices for two seconds, despite the warning signage, and the device goes into full alarm. Security personnel have fifteen seconds to confront the unauthorized person before the delayed egress system lets them out according to life safety code.

Case 4: A non-fire emergency necessitates the evacuation of the emergency room. A receptions or security guard activates a switch and the doors swing open.

Case 5: The fire alarm is activated. The delayed egress system is deactivated and people can exit freely. The door may remain locked from the outside or may fail safe - be unlocked from the outside - in the event of a fire alarm if local authorities require it by choosing either a fail safe or fail secure electric mortise lock for the mortise exit device.

Case 6: In a complete power outage, the door may be locked or unlocked from outside (depending as above on the choice of a fail safe or fail secure mortise lock). If fail secure there may be entry by key. The delayed egress exit devices now act as simple mechanical exit devices, allowing free egress.


From a door hardware salesperson's and buyer's perspective, this means that more questions need be asked, which in turn means that the salesperson needs to know (or have access to) more answers. Secondly, because door hardware installation often involves hardware, electricity and software, the division of responsibility between the trades is also often complex. Today it is difficult to be a locksmith without a low voltage license in many states, and systems integrators are finding themselves installing more and more locks. The different skill sets of those installing hardware mean that door hardware salespeople must often compensate for the lack of knowledge of the installer, educating them as necessary so that they can successfully install the hardware they may buy.

Similarly the buyer of door hardware must also ask more questions about hardware (and perhaps software) and how different components affect the operation, safety and security of a door and must be prepared to listen to the answers. Because the operation of a door can be so complex, great care is needed in hardware selection.

The installer or installers of door hardware must understand how each component works in order to assure that in the end the whole system works correctly. In the system above, an installer working alone would need expertise in electricity, locks, electronics, access control and would also need at least intermediate level computer network skills. Usually, in a project like the one above, a group of installers, each with a different skill set, must work together. Then, coordination and division of responsibility becomes a challenge.

Yes, doors today are often more complex then they used to be. Approach with caution and an open mind.


This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

Show Details
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)