ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

A brief history of system architecture

Updated on July 4, 2013
Source

Physical architecture of a system is defined by the way it functions. Originally computers were ‘mainframes’ – one huge collection of switches and tapes, with a single input point for teletype or punch cards, and a single output device, a printer. These computers were as large as a building. As time went on they became small as a room. People stood in line for their chance to use the computer. You will still find this type of architecture in colleges for engineering students.

In the 1970s, the personal computer debuted. Since it could not house the large relays of a mainframe, this was seen as a personal super typewriter; graphics were extremely limited in a personal monitor (remember Hercules boards?). Sharing data was achieved by saving things on 5-1/2-inch diskettes. Even the programs that were run on the PCs ran off the diskettes – hard disks were tiny (10 MB) if existent at all. RAM was equally limited. The Motorola CPU chip used in Macintosh, Atari and Commodore PCs opened the possibilities of expanding the usefulness of a PC to things other than word processing.

In an effort to tap the user population that was eyeing the Macs, Intel set about developing the 808x series of chips, which opened up the DOS market to private users. Still, both PCs and mainframes were in the position of a one-machine-one-user architecture.

While businesses needed the power of a mainframe, they could not waste the personnel time having people in line for use (or their jobs waiting in a queue for a mainframe operator). Thus began tiers. Several people needed to be able to access the mainframe at the same time. So “dumb” terminals were placed at most desktops, and e-mail became the fad. A dumb terminal has no processor – it is a monitor and keyboard wired to a main frame. As such, the mainframe did all the work. One may choose to not call a terminal a tier, since it’s more like a lateral expansion. Semantics.

So in the early 1990s people often had two terminals at their desks – a dumb terminal hooked to the mainframe and e-mail, and a PC for their non-shared work. Time on the mainframe could really stretch out – people learned when were the ‘peak’ periods of use and tried to do their work at ‘off’ times. On a Friday at 3 PM, when everyone was trying to wrap up the week’s work, it could take up to an hour just to get a report printed. So anything which could be done on the PC was done there. Because of the familiarity with the mainframe command system, Intel PCs were used more often than Macs, unless the people using a PC were technofreaks and wanted to play with Macs.

As it became apparent that personal computers had a great deal of popularity, and technology soared ahead in RAM, ROM and processors, designers were looking for a way to meld the advantages of mainframes and PCs. That gave birth to the network. In a network, the server does a lot of the work in trafficking that the mainframe once did, but part of the work was shared by the nodes, or “smart terminals”, as the nodes put in queue requests and passed information along to each other. At least, even at $20,000 for a server, it was cheaper than a $6,000,000 mainframe with no trade-in value!

There were a lot of growing pains at this period – many different networking models and operating systems (NOSs). Companies weren’t sure where the future was going, so they bought this and that and experimented. I remember being in one company where I could walk around and find Apples, Macintoshes, Intel (PC, AT, XT), “Trash 80s” (TRS-80), main frame terminals, and at least two different network OSs. It was a hodgepodge. And many companies are still carrying this legacy.

Client/server architecture is usually a network – a server does some of the work and the client (node) the rest. This is not just true of the NOS, but of applications using this architecture – part of the application is on the server, and downloaded to the node RAM when executed, part had to be called directly from the server, and part was local at the node. Yet another part might be in a database on another server. A good example of this was Word Perfect, which kept running even if the network went down – until you wanted to print, which you could only do through the server.

Web architecture could be considered client/server, but the web server is unique in that it must be designed to accept a “universal” language rather than the language of the NOS. Then the web interface usually has to communicate with information on data servers. All of these possibilities required new languages which were more efficient than AIX or VMX, which did not work well with the PC architecture.

IBM came up with a model of the various communication layers used by a NOS – those that ‘spoke’ to the business applications, those that handled the user interface, etc. If I remember right, there are 7 defined layers. Each of these layers actually performs a distinct function independent of the other layers. It is the synchronization of these layers, and the separation of responsibility between the node and the server or multiple servers (e-mail, web, data, applications, users) that make them so powerful.

As prices, technology and applications began developing for the tiered architecture, “migration” and “maintenance” became keywords. For over a decade companies were still seeking the best possible answer and then migrating over to their architecture(s) of choice. Applications were wholly revamped and it was like having a totally new system at each migration. Finally this has slowed down, and maintaining the applications and growing technology is the major activity of the IT departments.

The old method was that one technofreak or another decided “this” was the way to go and a company would simply adapt his/her recommendation. This sometimes resulted in smokestack architectures, piling one obsolete setup on top of another. In those days, there was no such degree major as computers – computer managers were either mathematicians or electrical engineers.

This is no longer an acceptable approach. Now we must look at what is there and develop a sane plan to maintain what we need from the legacy systems, see far enough into the future to be sure any replacements have a future, and design a migration which is not only successful but reasonably priced.

The data is the common point of reference for old and new systems. Since all of these systems process data that come from predominantly the same places, the different environments must seamlessly communicate and often share the same data. Hence, one of the most important considerations in systems architecture is the architecture of the data. And the next step is to migrate this data to a newer architecture.

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)