ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Computer Models: An Abstraction of Realty

Updated on July 26, 2016
A simple positive feedback model for population growth.
A simple positive feedback model for population growth.

Every computer model is an abstraction of realty. This is by definition. Models are created by taking pieces of reality and putting them together in a form that can make some sort of prediction or assessment about something. Models are usually designed to represent reality but it is not reality itself.

To use an example we can look that the population dynamics of a town. In its most simplest a basic form, the town's population can be represented by the difference between the birth rate and death rate. This is an abstraction of realty because we know that there are many more factors that influence population levels than just the birth rate and death rate. What's important to note here is that even when you add more parameters to a model to increase its accuracy and realism (such as the rate of people moving into and out of town), it's still just an abstraction on realty. Think of it this way, a model may approach reality as the accuracy and number of variables increases but it will never become reality.

Another example could be a hydraulic model of complex drainage system. There are a multitude of modeling programs that can be used to create a simulation of the drainage system. The hydraulic engineer can choose the modeling approach, define parameters to describe the system (such as channel dimensions, rainfall depth and intensity, ground cover, etc) and then let the computer crunch the numbers. The results that may be produced could include such things as the depth of flooding, flood velocities, inundation limits, etc. However, no matter how complex or how many finite elements are used to define the model's features, it is still only an abstraction of reality.

Because every model is an abstraction of reality, every model has a boundary as well. A model's boundary is essentially its limit. That is to say that a boundary can be starting point in a model, an ending point, or simply the interface between something being modeling and something on the "outside." In addition to this, every model must have a boundary - you can't have a model without one. Even the most sophisticated computer models have a boundary and require an initial conditions to set the simulation in motion. All models have a starting point and require some kind of seed to set the simulation in motion.

Modelling Results showing a scenario where Japan's Population Exceeds that of the United States in the Future.  Is this reasonable?  You decide.
Modelling Results showing a scenario where Japan's Population Exceeds that of the United States in the Future. Is this reasonable? You decide.

Can Any Model Be Useful Then?

Even though models are abstractions, they can still be quite useful. In fact, even simple models can be useful in such applications as business, engineering, healthcare, etc. However, the usefulness of model and its results are depended on a number of factors. First, you have to consider what your inputs to the model are. If you use garbage data to start the model, then it most certainly will give garbage results (the famous GIGO acronym - Garbage In Garbage Out). So then therefore it becomes very important to ensure that your model inputs are accurate an representation of the situation you are trying to model.

Once your model has produced results you should diligently review to check for reasonableness. This initial test of reasonableness is often called the "smell test." The "smell test" is a common sense way of evaluating the results of a model. Essentially, if the model produces impossible values (such as a town's population exceeding the world's population) or negative values for parameters that should never go below zero, then the model doesn't pass the "smell test."

If something doesn't pass the "smell test" (and you are certain that your inputs are good) then it usually means that there is an error in the model or that something important is missing. The error could be anything from a simple mathematical error to the failure to include a parameter in the model that would have an impact on the results. In essence, the "smell test" is a way of assessing the adequacy of a model without actually doing an validation or calibration.

Model Confidence

Confidence in a model is fairly subjective and differs from one model to another depending on a variety of factors. Obviously, confidence is tied to the perceived accuracy of the model that is being run. If a model has been validated using real life data then we would be expected to have a good degree of confidence in that model. Furthermore, if a model has been tested to accurately predict a variety of real life situations, then we would be expected to have a high degree of confidence in the model as well

Results of a flood model in the US Army Corps of Engineer's HEC-RAS computer program
Results of a flood model in the US Army Corps of Engineer's HEC-RAS computer program | Source

Validating models is an important step to help ensure that the results can be trusted and that they would be useful. Validation takes many forms but typically includes comparing results of the model to real life measured values. For example, a flood inundation model's predicted depths can be compared to water marks from an actual flood. If the computed flood depths match the measured flood depths (and the parameters to describe the drainage system are accurate) then the model can be assumed to produce accurate results. Going back to the example of a model describing the population dynamics of a town, the predicted population at any given moment in time can be compared to a census to validate (or invalidate) the model.

In addition to having model validation, a key to confidence in modeling lies in the documentation. If any model is to be used to properly, the user should consult the documentation of that model first. It's import to do this so that you are aware of a model's assumptions and limitations. Additionally, it's important to review the equations that the define the relationships of variables within the model as well as this may influence the types of outcomes that it produces.

Comments

    0 of 8192 characters used
    Post Comment

    No comments yet.

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)