ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

How To Build And Analyze A Series Circuit

Updated on August 16, 2014

Series Circuits

In my last Hub, I showed a very simple DC circuit with just a single resistor connected to a battery. In this Hub, we'll look at the current through and the voltage across multiple resistors when those resistors are connected in series to a voltage source. Then I'll build the circuit on a prototyping board (breadboard) and take some measurements.

Theory

Series resistances are additive, which means that if you have n resistors in series of values x1, x2, ..., xn , the total resistance will be x1 + x2 + ... + xn. So when analyzing a series resistive circuit, you can substitute a single resistor with the sum value for a string of resistors in series, as exemplified in the schematic below.

The equivalent resistance of a set of resistors in series is the sum of the resistances.
The equivalent resistance of a set of resistors in series is the sum of the resistances. | Source

So we know how to replace multiple resistors in series with a single resistor. We can use Ohm's Law to calculate the current in this equivalent circuit, and the current in the simplified circuit is the same current that flows through the series circuit, namely I = V / Req = V / ( R1 + R2 + ... + Rn).

We can use Ohm's Law yet again to find the voltage drop across each of the series resistors now that we have an equation for the current. Remember that given current I and resistance Rj we can calculate the voltage Vj across that resistor Rjas Vj = I * Rj . Substitute the above equation for current I and you get Vj = ( V / (R1 + R2 + ... + Rn )) * Rj, where V is the source voltage. We can rearrange this equation to the following form: Vj = V * ( Rj / Req ), where Req is the sum of all the series resistors. In other words, to find the voltage across one of the series resistors, multiply the source voltage by that resistor divided by the sum of all the series resistors.

An Example Circuit

Let's build and test a real circuit and compare the expected current and voltages to the measured values.

Using the schematic of the series circuit above, for V we can use a 1.5 V AA battery, and for resistors R1, R2, and R3, we can use 1.2 kΩ, 2.7 kΩ, and 4.7 kΩ resistors. This produces the circuit as shown below:

A series circuit.
A series circuit. | Source

We can use a multimeter to check the voltages, currents, and resistances of all the parts of the circuit. Shown below is a table of the nominal/calculated values and their actually measured counterparts.

Table of Circuit Values

Element
Calculated/Nominal Value
Measured Value
V
1.5 V
1.40 V
R1
1.2 kΩ
1.18 kΩ
R2
2.7 kΩ
2.68 kΩ
R3
4.7 kΩ
4.65 kΩ
Req / RTotal
8.6 kΩ
8.50 kΩ
I
0.17 mA
0.164 mA
VR1
0.20 V
0.194 V
VR2
0.50 V
0.440 V
VR3
0.80 V
0.760 V

The measured values are pretty close to the calculated values. I encourage you to build a similar circuit with other resistance values, calculate what the voltages across the resistors should be, and measure them yourself to confirm the discussed equations.

In the next Hub, I'll discuss parallel resistive circuits. Thanks for reading!

Comments

    0 of 8192 characters used
    Post Comment

    No comments yet.

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://hubpages.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)