ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Eudoxus

Updated on June 20, 2010

Eudoxus was born in Cnidus (or Knidos), an ancient Greek city in Anatolia, now part of Turkey in around 410 BC. Eudoxus spent some time at Tarentum (Taranto) in southern Italy where he studied mathematics under Archytas, before moving on to Athens where he studied under Plato at The Platonic Academy. As well as mathematics, he also studied medicine and astronomy.

Eudoxus is famous for his method of exhaustion which he applied to find the perimeters, areas and volumes of shapes that do not have straight edges. An example of Eudoxus’ method is to find the circumference of a circle by inscribing and circumscribing the circle with regular polygons. Then by increasing indefinitely the number of sides of each of these polygons, he was able to find two values between which the circumference of the circle lay. The more sides each of the polygons has, the more close their perimeters will be to the circumference of the circle. Essentially Eudoxus used what we would today call a limit. He applied this method to other curves, and also to finding areas and volumes of shapes with curved edges.

Eudoxus is also famous for his definition of equal ratios (see below).

Eudoxus’ other claim to fame is in astronomy for his ingenious model of the solar system. In an attempt to model the observed belief that the moon and the sun rotate around the earth, Eudoxus gave to each of them three spheres. The three spheres for the moon respectively explained its rising and setting, its monthly motion through the zodiac and its monthly revolution. The three spheres for the sun were similar except that its motion was annual rather than monthly.

Eudoxus spent his final years in Cyzicus, northern Turkey, where he taught mathematics and practised medicine, before returning to his native Cnidus. He died in around 355 BC.

A contribution of Eudoxus to mathematics

One of Eudoxus’ great contributions to mathematics is his definition of equal ratios. The early Greek mathematicians, influenced by The Pythagoreans, had a real problem with irrational numbers since their philosophy was based on the assumption that all mathematics is constructed around the whole numbers. It was considered impossible, therefore, to compare incommensurables such as the length of the side of a square and the length of its diagonal. Today, we have no problem in expressing this ratio as 1:Ö2, but the early Greeks could not accept a ratio between rational and irrational numbers.

This definition of Eudoxus’ equal ratios is given by Euclid as Definition 5 of Book V of ‘The Elements’. This translation is taken from ‘Men of Mathematics’ by ET Bell (Pelican books, 1965):

The first of four magnitudes is said to have the same ratio to the second that the third has to the fourth when, any whatever equimultiples of the first and third being taken, and any other equimultiples of the second and fourth, the multiple of the first is greater than, equal to, or less than the multiple of the second, according as the multiple of the third is greater than, equal to, or less than the multiple of the fourth.

This is what it means in modern-day language:

Take four magnitudes a, b, c and d, with a and b being of the same kind (e.g. both lengths of line segments, both areas, both volumes, or both angles) and likewise c and d are of the same kind, and such that the ratios a/b and c/d are equal. Then, if m and n are arbitrary positive integers, one of the following is true:

If ma > nb , then it must also be true that mc > nd

If ma = nb, then it must also be true that mc = nd

If ma < nb, then it must also be true that mc < nd

 

Take, for example two circles with diameters 2 and 3.

If a and b are the lengths of the diameters and c and d are the lengths of the circumferences, then we know that a = 2, b = 3, c = 2π and d = 3π

Choose arbitrary positive integers m = 5 and n = 3, then:

ma = 5 × 2 = 10

nb = 3 × 3 = 9

mc = 5 × 2π= 10π

nd = 3 × 3π = 9π

So it is true that ma > nb implies that mc > nd

Note that we have compared the magnitudes, and that the units were not specified.

working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)