ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Jump: Physics of Ski Jumping

Updated on December 10, 2010
Credit: Shay Haas
Credit: Shay Haas

Ski Jumping is a sport in which competitors ski down a steep ramp or ‘In run’ with a take off ramp which they use to jump into the air. Ski jumping originated in 1809 in Norway, with the first completion held in 1862, and has been a part of the Winter-Olympics since the first games in 1924.

The jump is scored on a system based on distance and style. Each ‘in run’ has a par distance to aim for (the K-Point), for example at 90m from the ramp. Skiers are awarded 60points for landing on the K-point or lose 1.8 points for every meter they are away. 5 judges can also award up to 20points for the style: focusing on keeping the skis steady, balance, body position and landing.

Physics ofSki Jumping

As in normal skiing the run down the ramp is based on a basic energy transformation from gravity potential energy to kinetic energy.

Kinetic Energy: Ek = 1/2mv2

Gravitational Potential Energy: Egrav = mgh

Therefore, the kinetic energy a ski jumper possesses is based on their velocity on take off and this is based on their initial gravitational potential energy. The conversion from gravitational potential to kinetic energy is not 100% efficient as energy is lost through friction, as sound, drag and heat. Ski jumpers attempt to optimize their jump by reducing drag; they do this by leaning forward and keeping their skis parallel to their direction of travel. This minimizes the area of their body pushing through the air and streamlines them, therefore reduces drag. Also, due to being more streamlined, the amount of turbulent flow around them in flight is also decreased, maximizing their speed.

By angling their skis into a ‘V’ shape ski jumpers can maximize the lift generated by increasing the surface area of air flowing over their skis, generating more lift, helping them stay in the air longer.

The principles of projectiles can be applied to a skier’s trajectory. When a skier leaves the ramp his direction of travel can be resolved in two directions, horizontally and vertically. If they were to leave the ramp at an angle Ѳ then the velocity in the vertical component can be given with:

Velocity x sinѲ - This will affect how long the skier remains in the air and will be affected by vertical drag and the skiers weight force pulling them downwards.

The velocity in the horizontal component can be given with:

Velocity x cosѲ - This will affect how far the skier travels and is affected by drag and any lift generated during flight.


This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

Show Details
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)