ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Want To Ace GRE Math? Make Abstract Problems Easier to Understand with This Technique

Updated on November 29, 2014

Here’s the double-whammy of GRE math problems! I explained in a previous hub that number property problems are a favorite of test writers because by their very nature they involve abstract thinking. Pile this abstract thinking on top of the unfamiliar logic demanded by the Quantitative Comparison format, and some of these problems definitely qualify for the designation “brain teaser.” But I’ve got good news once again! And once again, it stems from the strategy I’ve been touting: applying actual numbers. Actual numbers allow you to think about number properties more concretely. Applying actual numbers to the QC format, as we’ve seen, gives you a straightforward method for solving QC problems.

So let’s put the strategy to work on a couple QC number-property problems, and see what kind of benefit it provides.

Remainders? Really?


Remainders fall under the category of number properties because they are related to divisibility, which is related to factors and multiples. As it relates to math, “remainder” is a term that you may not have used since middle school. If you divide 21 by 5 on a calculator, you get 4.2, no remainder shows up. But the GRE requires you to shake the rust off this ancient concept and instead say, “Five divides evenly into 20 four times, and this leaves a remainder of 1,” or provide the answer “4 r. 1.” (Don’t start getting nervous …. Remember that the number of math concepts with which you need to become reacquainted is relatively small.)

If you’re comfortable working this problem abstractly, it undoubtedly is faster than applying actual numbers. Briefly, since 10 is a multiple of 5, adding it to n has no impact on the remainder. So the quantities will always be equal, and you’ll select (C) for your answer. But if these last couple sentences make no sense to you; or if you vaguely recognize these concepts but know that they are stored in the deep, nearly inaccessible recesses of your mind; then apply actual numbers! Although you may use more time than your fellow test-takers who approach this problem abstractly, you still get it right!

Here’s how: Just as I did with the problems I introduced in the last hub, I’ll start by picking any value for n that complies with the rules. This means that n must be positive and it must be an integer (whole number). I could simply use n = 1, but starting with a number smaller than 5 can get confusing. So instead, let’s start with n = 12:

Quantity A: 12 ÷ 5 = 2, remainder 2
Quantity B: 22 ÷ 5 = 4, remainder 2

(Unless you have a third- or fourth-grader, it’s been a while! Let me spell it out: When I divide 12 by 5, I get 2 because 2 x 5 = 10, and 10 is the multiple of 5 that is as close as I can get to 12 without going over. Since 2 x 5 = 10, I have 2 “leftover” units. The leftovers are the remainder.)

With n = 12, each quantity has a remainder of 2, so they are equal. Right away I can cross off answer choices (A) and (B).

Now the question is whether I can get the relationship to change. Let’s try an n that’s different from 22. How about 149? It’s got 3 digits, and it’s odd.

Quantity A = 149 ÷ 5 = 29 remainder 4
Quantity B = 159 ÷ 5 = 31 remainder 4

The remainders are still equal. Let me try one other thing. How about a prime number? Let’s go with 43.

Quantity A = 43 ÷ 5 = 8 remainder 3
Quantity B = 53 ÷ 5 = 10 remainder 3

By now, most test takers would either see the pattern or decide that it’s worth the risk of going no further and selecting answer choice (C).

Prime Factoring


Here is one more. This one employs the concept of prime factors. Prime factors are numbers that have exactly two factors: themselves and 1. Examples include 2, 3, 5, 7, 11, 13, 17 and 19. (Shall I assure you one more time? There really aren’t very many math concepts with which you need to get reacquainted! And when you’ve finished working through the two problems in this hub, you’ll have tackled two of them!)

Abstract thinkers: Since 9 and 8 each introduce exactly one additional prime factor, you may be thinking that the answer should be (C). However, since the quantities specify the number of different prime factors, you’ll need to consider the impact of an n that already includes 2 or 3 as a prime factor. So even for someone pretty handy with math, it’s a good idea to apply actual numbers just to check your thinking.

I start by picking a value for n, as usual. And once again with this problem, since I’m factoring the numbers I’d rather start with something bigger than my usual choice of n = 1 or 2. So let’s try n = 10.

Quantity A: The prime factors of 90 are 2 x 3 x 3 x 5; so the number of different prime factors is 3
Quantity B: The prime factors of 80 are 2 x 2 x 2 x 2 x 5; so the number of different prime factors is 2

QA > QB, so cross off answer choices (B) and (C).

Can I get the relationship to change? Let me pick an n that is different from 10. Let’s try an odd number, like 11.

Quantity A: The prime factors of 99 are 3 x 3 x 11; so the number of different prime factors is 2
Quantity B: The prime factors of 88 are 2 x 2 x 2 x 11; so the number of different prime factors is 2

The quantities are equal, so the relationship changed. My answer is (D).

What Shall I Choose?

In case you’re wondering how I came up with the values of n that I used, for the most part, I picked them because I felt like it. Some of my students have thought that there are some hidden criteria for selecting values. Nope. Pick what you like. The only caveats are (1) be sure that the values comply with the problem’s rules, and (2) try values from the different categories (e.g. 0 or 1, negatives, proper fractions).

Give it a try! And let me know how you make out. All the best in your test preparations!


    0 of 8192 characters used
    Post Comment

    No comments yet.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)