ArtsAutosBooksBusinessEducationEntertainmentFamilyFashionFoodGamesGenderHealthHolidaysHomeHubPagesPersonal FinancePetsPoliticsReligionSportsTechnologyTravel

Data Lake – A Game Changer for Big Data Analytics

Updated on July 27, 2020
akhileshsrivastava profile image

Akhilesh Srivastava is Chief General Manager (IT & Highway Operations) NHAI, also involved in the modernization of the Highway sector.

Data Lakes have become the cornerstone of several big data implementations. Compared to data warehouses, data lakes offer huge benefits, especially when working with large volumes of unstructured data generated at high velocities.

Though Data Lakes are rapidly gaining momentum across organisations of all sizes there is still plenty of confusion on – what is it? Does my organisation really need a data lake? What are the benefits of using a data lake over a data warehouse? And more. In this article, we take a look at why – a data lake is a game changer for big data analysis and why it matters.

What is a Data Lake?

A data lake is a powerful repository of data. If you think that sounds similar to a data warehouse, then that’s where the similarities end. Though both a data warehouse and a data lake are used to store data, they are different tools used for different purposes.

James Dixon, who coined the term data lake uses the following analogy to highlight the differences between both. A data warehouse or a datamart is like bottled water. The water stored in it (data) is clean, structured and packaged for easy consumption.

A data lake, on the other hand, is similar to a nature body of water. The contents of the data lake are from difference sources and different people use it for different purposes. Some dive in it, while others fish in it.

Think of a data lake as a single repository for all the data of an organisation – structured, unstructured, internal and external data. The data in a data lake is raw – it’s not processed, analysed or structured. Unlike a data warehouse that requires data to be of a specific format, a data lake supports all types, schemas and sources of data.

The idea behind a data lake is simple yet ingenious – it eliminates the need to format data to a specific format before storing it. Thereby, eliminating upfront data transformation costs. Once the data is added to the lake, it can be used by anyone in the organisation for various analysis purposes.

The Incredible Value of Deploying a Data Lake

The data lake is a powerful data architecture that makes it incredibly cost-effective to store, manage and analyse data compared to traditional data storing technologies like a warehouse or data mart. With a data lake, users can harness data from various sources, in short time, thereby expediting decision making.

Top Benefits of a Data Lake for an Organisation

  • Store All Types of Data

Generally, when an organisation uses an ERW (Enterprise Resource Warehouse), the team has to decide which data to include in the warehouse and which to discard. As a result, only data that is considered useful are included in the warehouse.

A Data Lake, on the other hand, allows organisations to store all types of data – structured and unstructured. From CRM data to social media posts, website access data to app activity – all types of data can go in a data lake.

  • Highly Flexible and Versatile

A data lake offers unmatched flexibility for data analytics. You don’t have to decide which data is useful upfront.

In a data lake, data is stored in its raw format – without prior structuring. This way, different teams can refine it and use it as per their requirements. Additionally, a data lake offers unlimited ways to query the data allowing better insights and improved applications of the data. A large variety of tools can be used to analyse and refine the data to gather better insight.

  • Improved Operational Efficiency

Today, with the availability of IoT and machine learning algorithms, it’s easier than ever before to collect real-time data from various devices – sensors, mobile applications and more. A data lake makes it convenient to run analytics on machine-generated IoT data. This is a huge boon for organisations that are looking to eliminate operational bottlenecks, reduce operational costs and to increase the quality of data.

  • Democratize Data

In order to make the right decisions at the right time, employees need access to data. Currently, data is a privilege that is only available to the top executives. Mid-level and entry-level managers and team leaders have access only to segmented data pertaining to their department or team.

A data lake democratizes access to data to all – thereby helping employees at various levels make better decisions at their levels.

  • Scalability

Storing data in a data lake is incredibly cost-effective compared to a structured warehouse. A data lake eliminates the time and cost spent on structuring data for storage. Additionally, it’s highly scalable and the costs of maintaining a data lake is far inexpensive compared to a data warehouse.

  • Schema Flexibility

Traditionally, a data warehouse requires data to be in a specific format. This is not only time-consuming but also a hurdle for real-time data analysis. All traditional data warehouses are schema-fixed.

A data lake is completely schema-free. Different teams can designate multiple schemas for the same set of data based on their requirements. Simply put, it helps in decoupling data from schema, which is a huge advantage for analytics.

  • Not tied to a Particular Query Language

Traditional data warehouses mostly rely on SQL for analytics. A data lake has the provision to support multiple query languages. It paves the way for advanced data analytics with support for machine-learning and deep-learning algorithms.

Data Lake Case Study: NHAI

As several organisations are pondering the implications of a data lake, NHAI (National Highways Authority of India) has shown the way forward by implementing a cloud-based data lake. It has become the first construction sector organisation to implement a data lake – thereby expediting the process of making timely and correct decisions, relying on volumes of historical data.

The system predicts conflicts and alerts managers regarding delays, thereby quickening the process of decision making. The data lake provides access to real-time data to all stakeholders of the NHAI – contractors, consultants, and freelance engineers.

A Game Changer in Big Data Analytics

Data is the new “oil” in today’s digital world. A data lake, instead of discarding data that doesn’t fit into a specific schema saves every nugget of data – however insignificant it may seem. Data lake gives analysts the power to swim through volumes of data to find the nugget that they are looking for.


This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

Show Details
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)