Solar Advantages

Jump to Last Post 1-6 of 6 discussions (6 posts)
  1. Makemoneycashflow profile image60
    Makemoneycashflowposted 15 years ago

    Introduction to Solar Energy

    Solar Power is a form of energy and is generated by the sun. This kind of energy can be harnessed using cells and converted into electricity or thermal energy. It is the earth�s most available energy source and can easily be taken advantage of. If you live in a particularly sunny area (sunny most days) then you can definitely take advantage of solar power. Other forms of energy e.g. wind and tidal are much harder to harness, especially for the use of a home. They would require much more investment and the output wouldn�t be as much.

    Advantages of Solar Power

    Solar Power has many advantages, and already many firms and organisations in the world use this form of energy as an alternative. One of the advantages already mentioned is that it is the earth�s most available energy source. This is because the sun is present every day, week in week out. The amount of energy given out by the sun is immense; using it for personal uses (domestic use) wouldn�t affect the resulting amount left. Solar Power is inexhaustible, which means we could use it for the rest of our lives, and our children�s lives, and so on. No pollution. What more could be asked of an energy source? Government organisations around the world want to reduce pollution, our planet is being affected; climate change is occurring. With solar power this problem can be demolished! Of course the entire world population would have to switch to solar power, a task which would take much time and money. But, if you become one of the people to start using solar power then maybe, little by little, solar power will become the main source of energy. That is the goal!

    Make Your Homemade Solar Panels

    So, how can you turn to solar power? You may believe that it will be too complicated, expensive or even time consuming to set up solar power systems and panels. The reality is that it doesn�t have to be any of these, as guides are being offered on the internet. The best way to start is by making solar panels. Yes, that�s making, not buying. Solar panels cost about $10,000 each (and that�s being generous), and there�s no point even discussing the installation fees. So, unless you�re filthy rich, the best option to take is to make your own solar panels (plus, it�s more fun!).

    GreenDIYenergy is a company offering a high quality guide on how to make your own solar panel(s). This is a mixture of videos, pictures, diagrams and schematics, making it all the more easier to follow. The guide is split into three parts: Solar Panel Systems, The �$98 Solar Panel� Guide and the �Solar Energy Bundle�. The Solar Panel Systems guide will teach how solar energy is produced and how you will produce your solar panel system. The �$98 Solar Panel� guide will teach you how to make the solar panels from scratch, using purchasable materials. This is personally the best part in my opinion, gets really fun! The final guide, �Solar Energy Bundle�, includes resources to help you along the way and how to connect up your solar panels. You can create your entire solar panel system! It also includes information on solar tax credits and rebates. Not to mention the bonuses: Video guide and Build your own wind turbine guide! The cost of electricity is increasing. Just imagine the amount of money which can be saved on your current energy bills. You could cut 50% off from making your own solar panels, and maybe one day by 100%. It�s time for you to go GREEN, and make your own solar panels today.

    Making your own solar panels is fun, and the advantages are there to reap. You can make them with friends and family, enjoy the experience. Imagine making them with your children, knowing when they grow they would know the benefits about solar power. This could lead them on to make their own solar panels, and so spread the message about the most available energy source available to us.

    Hope this was helpful to you all!

  2. Leelin profile image61
    Leelinposted 15 years ago

    What's up with all the little question mark thingys anyway?

  3. Makemoneycashflow profile image60
    Makemoneycashflowposted 15 years ago

    Im actually not sure, I don't think it recognises the letters!

  4. profile image57
    life enrichposted 15 years ago

    Solving Solar-power Issues
    Certainly, no one would accept only having electricity during the day, and then only on clear days, if they have a choice. We need energy storage -- batteries. Unfortunately, batteries add a lot of cost and maintenance to the PV system. Currently, however, it's a necessity if you want to be completely independent. One way around the problem is to connect your house to the utility grid, buying power when you need it and selling to them when you produce more than you need. This way, the utility acts as a practically infinite storage system. The utility has to agree, of course, and in most cases will buy power from you at a much lower price than their own selling price. You will also need special equipment to make sure that the power you sell to your utility is synchronous with theirs -- that it shares the same sinusoidal waveform and frequency. Safety is an issue as well. The utility has to make sure that if there's a power outage in your neighborhood, your PV system won't try to feed electricity into lines that a lineman may think is dead. This is called islanding.
    If you decide to use batteries, keep in mind that they will have to be maintained, and then replaced after a certain number of years. The PV modules should last 20 years or more, but batteries just don't have that kind of useful life. Batteries in PV systems can also be very dangerous because of the energy they store and the acidic electrolytes they contain, so you'll need a well-ventilated, non-metallic enclosure for them.
    Although several different kinds of batteries are commonly used, the one characteristic they should all have in common is that they are deep-cycle batteries. Unlike your car battery, which is a shallow-cycle battery, deep-cycle batteries can discharge more of their stored energy while still maintaining long life. Car batteries discharge a large current for a very short time -- to start your car -- and are then immediately recharged as you drive. PV batteries generally have to discharge a smaller current for a longer period (such as all night), while being charged during the day.
    The most commonly used deep-cycle batteries are lead-acid batteries (both sealed and vented) and nickel-cadmium batteries. Nickel-cadmium batteries are more expensive, but last longer and can be discharged more completely without harm. Even deep-cycle lead-acid batteries can't be discharged 100 percent without seriously shortening battery life, and generally, PV systems are designed to discharge lead-acid batteries no more than 40 percent or 50 percent.
    Also, the use of batteries requires the installation of another component called a charge controller. Batteries last a lot longer if care is taken so that they aren't overcharged or drained too much. That's what a charge controller does. Once the batteries into them. Similarly, once the batteries have been drained to a certain predetermined level, controlled by measuring battery voltage, many charge controllers will not allow more current to be drained from the batteries until they have been recharged. The use of a charge controller is essential for long battery life. sureshbhatt

  5. profile image57
    life enrichposted 15 years ago

    Solving Solar-power Issues
    Certainly, no one would accept only having electricity during the day, and then only on clear days, if they have a choice. We need energy storage -- batteries. Unfortunately, batteries add a lot of cost and maintenance to the PV system. Currently, however, it's a necessity if you want to be completely independent. One way around the problem is to connect your house to the utility grid, buying power when you need it and selling to them when you produce more than you need. This way, the utility acts as a practically infinite storage system. The utility has to agree, of course, and in most cases will buy power from you at a much lower price than their own selling price. You will also need special equipment to make sure that the power you sell to your utility is synchronous with theirs -- that it shares the same sinusoidal waveform and frequency. Safety is an issue as well. The utility has to make sure that if there's a power outage in your neighborhood, your PV system won't try to feed electricity into lines that a lineman may think is dead. This is called islanding.
    If you decide to use batteries, keep in mind that they will have to be maintained, and then replaced after a certain number of years. The PV modules should last 20 years or more, but batteries just don't have that kind of useful life. Batteries in PV systems can also be very dangerous because of the energy they store and the acidic electrolytes they contain, so you'll need a well-ventilated, non-metallic enclosure for them.
    Although several different kinds of batteries are commonly used, the one characteristic they should all have in common is that they are deep-cycle batteries. Unlike your car battery, which is a shallow-cycle battery, deep-cycle batteries can discharge more of their stored energy while still maintaining long life. Car batteries discharge a large current for a very short time -- to start your car -- and are then immediately recharged as you drive. PV batteries generally have to discharge a smaller current for a longer period (such as all night), while being charged during the day.
    The most commonly used deep-cycle batteries are lead-acid batteries (both sealed and vented) and nickel-cadmium batteries. Nickel-cadmium batteries are more expensive, but last longer and can be discharged more completely without harm. Even deep-cycle lead-acid batteries can't be discharged 100 percent without seriously shortening battery life, and generally, PV systems are designed to discharge lead-acid batteries no more than 40 percent or 50 percent.
    Also, the use of batteries requires the installation of another component called a charge controller. Batteries last a lot longer if care is taken so that they aren't overcharged or drained too much. That's what a charge controller does. Once the batteries into them. Similarly, once the batteries have been drained to a certain predetermined level, controlled by measuring battery voltage, many charge controllers will not allow more current to be drained from the batteries until they have been recharged. The use of a charge controller is essential for long battery life. sureshbhatt

  6. profile image57
    life enrichposted 15 years ago

    Solving Solar-power Issues
    Certainly, no one would accept only having electricity during the day, and then only on clear days, if they have a choice. We need energy storage -- batteries. Unfortunately, batteries add a lot of cost and maintenance to the PV system. Currently, however, it's a necessity if you want to be completely independent. One way around the problem is to connect your house to the utility grid, buying power when you need it and selling to them when you produce more than you need. This way, the utility acts as a practically infinite storage system. The utility has to agree, of course, and in most cases will buy power from you at a much lower price than their own selling price. You will also need special equipment to make sure that the power you sell to your utility is synchronous with theirs -- that it shares the same sinusoidal waveform and frequency. Safety is an issue as well. The utility has to make sure that if there's a power outage in your neighborhood, your PV system won't try to feed electricity into lines that a lineman may think is dead. This is called islanding.
    If you decide to use batteries, keep in mind that they will have to be maintained, and then replaced after a certain number of years. The PV modules should last 20 years or more, but batteries just don't have that kind of useful life. Batteries in PV systems can also be very dangerous because of the energy they store and the acidic electrolytes they contain, so you'll need a well-ventilated, non-metallic enclosure for them.
    Although several different kinds of batteries are commonly used, the one characteristic they should all have in common is that they are deep-cycle batteries. Unlike your car battery, which is a shallow-cycle battery, deep-cycle batteries can discharge more of their stored energy while still maintaining long life. Car batteries discharge a large current for a very short time -- to start your car -- and are then immediately recharged as you drive. PV batteries generally have to discharge a smaller current for a longer period (such as all night), while being charged during the day.
    The most commonly used deep-cycle batteries are lead-acid batteries (both sealed and vented) and nickel-cadmium batteries. Nickel-cadmium batteries are more expensive, but last longer and can be discharged more completely without harm. Even deep-cycle lead-acid batteries can't be discharged 100 percent without seriously shortening battery life, and generally, PV systems are designed to discharge lead-acid batteries no more than 40 percent or 50 percent.
    Also, the use of batteries requires the installation of another component called a charge controller. Batteries last a lot longer if care is taken so that they aren't overcharged or drained too much. That's what a charge controller does. Once the batteries into them. Similarly, once the batteries have been drained to a certain predetermined level, controlled by measuring battery voltage, many charge controllers will not allow more current to be drained from the batteries until they have been recharged. The use of a charge controller is essential for long battery life. sureshbhatt

 
working

This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, hubpages.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://corp.maven.io/privacy-policy

Show Details
Necessary
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
Features
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Marketing
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Statistics
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)